Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 |
|||
(15 intermediate revisions by 11 users not shown) | |||
Line 4:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 14:
|bgcolor=#efdcc3|Edge figure||[[Triangle|{3}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||Self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
== Geometry==
It has three [[Infinite-order triangular tiling]] {3,
{| class=wikitable width=640
Line 34:
== Related polytopes and honeycombs ==
It is a part of a sequence of regular honeycombs with [[Infinite-order triangular tiling]] [[cell (geometry)|cells]]: {3,
It is a part of a sequence of regular honeycombs with [[order-3 apeirogonal tiling]] [[vertex figures]]: {''p'',
It is a part of a sequence of self-dual regular honeycombs: {''p'',
▲{{-}}
=== Order-infinite-4 triangular honeycomb===
{| class="wikitable" align="right" style="margin-left:10px" width=240
Line 47 ⟶ 48:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]s||{{CDD|node_1|3|node|infin|node|4|node}}<BR>{{CDD|node_1|3|node|infin|node|4|node_h0}} = {{CDD|node_1|3|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 57 ⟶ 58:
|bgcolor=#efdcc3|Edge figure||[[square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 square honeycomb|{4,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 triangular honeycomb''' (or '''3,
It has four [[infinite-order triangular tiling]]s, {3,
{| class=wikitable width=480
Line 74 ⟶ 75:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,
{{
=== Order-infinite-5 triangular honeycomb===
Line 84 ⟶ 85:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 94 ⟶ 95:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 pentagonal honeycomb|{5,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 109 ⟶ 110:
|}
{{
===Order-infinite-6 triangular honeycomb===
Line 117 ⟶ 118:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|6|node}}<BR>{{CDD|node_1|3|node|infin|node|6|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 127 ⟶ 128:
|bgcolor=#efdcc3|Edge figure||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 hexagonal honeycomb|{6,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 141 ⟶ 142:
|[[File:H3_3i6_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{
===Order-infinite-7 triangular honeycomb===
Line 149 ⟶ 150:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 159 ⟶ 160:
|bgcolor=#efdcc3|Edge figure||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 heptagonal honeycomb|{7,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[3,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 triangular honeycomb''' (or '''3,
{| class=wikitable
Line 173 ⟶ 174:
|[[File:H3_3i7_UHS_plane_at_infinity.png|240px]]<BR>Ideal surface
|}
{{
===Order-infinite-infinite triangular honeycomb===
Line 181 ⟶ 182:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{3,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|3|node|infin|node|infin|node}}<BR>{{CDD|node_1|3|node|infin|node|infin|node_h0}} = {{CDD|node_1|3|node|split1-ii|branch|labelinfin}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order triangular tiling|{3,
|-
|bgcolor=#efdcc3|Faces||[[Triangle|{3}]]
Line 191 ⟶ 192:
|bgcolor=#efdcc3|Edge figure||[[Apeirogon|{∞}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Infinite-order
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-3 apeirogonal honeycomb|{∞,
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[∞,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-infinite triangular honeycomb''' (or '''3,
{| class=wikitable width=480
Line 206 ⟶ 207:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {3,(
▲{{-}}
=== Order-infinite-3 square honeycomb===
{| class="wikitable" align="right" style="margin-left:10px"
Line 215 ⟶ 217:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|4|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[Order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-4 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 square honeycomb''' (or '''4,
The [[Schläfli symbol]] of the ''order-infinite-3 square honeycomb'' is {4,
{| class=wikitable
Line 247 ⟶ 249:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|5|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[Infinite-order pentagonal tiling|{5,
|-
|bgcolor=#efdcc3|Faces||[[Pentagon|{5}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[heptagonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-5 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 pentagonal honeycomb''' (or '''5,
The [[Schläfli symbol]] of the ''order-6-3 pentagonal honeycomb'' is {5,
{| class=wikitable
Line 278 ⟶ 280:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|6|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order hexagonal tiling|{6,
|-
|bgcolor=#efdcc3|Faces||[[Hexagon|{6}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-6 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 hexagonal honeycomb''' (or '''6,
The [[Schläfli symbol]] of the ''order-infinite-3 hexagonal honeycomb'' is {6,
{| class=wikitable
Line 303 ⟶ 305:
|}
{{
=== Order-infinite-3 heptagonal honeycomb===
Line 311 ⟶ 313:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{7,
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|7|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order heptagonal tiling|{7,
|-
|bgcolor=#efdcc3|Faces||[[Heptagon|{7}]]
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[order-3 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-7 triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[7,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 heptagonal honeycomb''' (or '''7,
The [[Schläfli symbol]] of the ''order-infinite-3 heptagonal honeycomb'' is {7,
{| class=wikitable
Line 336 ⟶ 338:
|}
{{
=== Order-infinite-3 apeirogonal honeycomb===
Line 344 ⟶ 346:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{
|-
|bgcolor=#efdcc3|[[Coxeter diagram]]||{{CDD|node_1|infin|node|infin|node|3|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Faces||[[Apeirogon]] {
|-
|bgcolor=#efdcc3|[[Vertex figure]]||[[infinite-order apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||[[Order-infinite-infinite triangular honeycomb|{3,
|-
|bgcolor=#efdcc3|[[Coxeter–Dynkin diagram#Ranks 4.E2.80.9310|Coxeter group]]||[
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-3 apeirogonal honeycomb''' (or '''
The [[Schläfli symbol]] of the apeirogonal tiling honeycomb is {
The "ideal surface" projection below is a plane-at-infinity, in the
{| class=wikitable
Line 377 ⟶ 379:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{4,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|4|node|infin|node|4|node}}<BR>{{CDD|node_1|4|node|infin|node|4|node_h0}} = {{CDD|node_1|4|node|split1-ii|nodes}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order square tiling|{4,
|-
|bgcolor=#efdcc3|Faces||[[Square|{4}]]
Line 387 ⟶ 389:
|bgcolor=#efdcc3|Edge figure||[[Square|{4}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-4 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[4,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-4 square honeycomb''' (or '''4,
All vertices are ultra-ideal (existing beyond the ideal boundary) with four [[infinite-order square tiling]]s existing around each edge and with an [[order-4 apeirogonal tiling]] [[vertex figure]].
Line 404 ⟶ 406:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {4,
{{
=== Order-infinite-5 pentagonal honeycomb===
Line 414 ⟶ 416:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]||{5,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|5|node|infin|node|5|node}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order pentagonal tiling|{5,
|-
|bgcolor=#efdcc3|Faces||[[pentagon|{5}]]
Line 424 ⟶ 426:
|bgcolor=#efdcc3|Edge figure||[[pentagon|{5}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-5 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[5,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-5 pentagonal honeycomb''' (or '''5,
All vertices are ultra-ideal (existing beyond the ideal boundary) with five infinite-order pentagonal tilings existing around each edge and with an [[order-5 apeirogonal tiling]] [[vertex figure]].
Line 438 ⟶ 440:
{| class=wikitable
|[[File:Hyperbolic honeycomb 5-i-5 poincare.png|240px]]<BR>[[Poincaré disk model]]
|[[File:
|}
{{
=== Order-infinite-6 hexagonal honeycomb===
Line 448 ⟶ 450:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{6,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|6|node|infin|node|6|node}}<BR>{{CDD|node_1|6|node|infin|node|6|node_h0}} = {{CDD|node_1|6|node|split1-ii|branch}}
|-
|bgcolor=#efdcc3|Cells||[[infinite-order hexagonal tiling|{6,
|-
|bgcolor=#efdcc3|Faces||[[hexagon|{6}]]
Line 458 ⟶ 460:
|bgcolor=#efdcc3|Edge figure||[[hexagon|{6}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-6 hexagonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[6,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-6 hexagonal honeycomb''' (or '''6,
{| class=wikitable
Line 473 ⟶ 475:
|}
It has a second construction as a uniform honeycomb, [[Schläfli symbol]] {6,(
{{
=== Order-infinite-7 heptagonal honeycomb===
Line 483 ⟶ 485:
|bgcolor=#efdcc3|Type||[[List of regular polytopes#Tessellations of hyperbolic 3-space|Regular honeycomb]]
|-
|bgcolor=#efdcc3|[[Schläfli symbol]]s||{7,
|-
|bgcolor=#efdcc3|[[Coxeter diagram#Lorentzian groups|Coxeter diagrams]]||{{CDD|node_1|7|node|infin|node|7|node}}
|-
|bgcolor=#efdcc3|Cells||[[order-5 heptagonal tiling|{7,
|-
|bgcolor=#efdcc3|Faces||[[heptagon|{7}]]
Line 493 ⟶ 495:
|bgcolor=#efdcc3|Edge figure||[[heptagon|{7}]]
|-
|bgcolor=#efdcc3|Vertex figure||[[Order-7 apeirogonal tiling|{
|-
|bgcolor=#efdcc3|Dual||self-dual
|-
|bgcolor=#efdcc3|[[Coxeter-Dynkin diagram#Lorentzian groups|Coxeter group]]||[7,
|-
|bgcolor=#efdcc3|Properties||Regular
|}
In the [[geometry]] of [[Hyperbolic space|hyperbolic 3-space]], the '''order-infinite-7 heptagonal honeycomb''' (or '''7,
{| class=wikitable
Line 508 ⟶ 510:
|}
{{
=== Order-infinite-infinite apeirogonal honeycomb ===
Line 550 ⟶ 552:
{{reflist}}
*[[H. S. M. Coxeter|Coxeter]], ''[[Regular Polytopes (book)|Regular Polytopes]]'', 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
* ''The Beauty of Geometry: Twelve Essays'' (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space] {{Webarchive|url=https://web.archive.org/web/20160610043106/http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf |date=2016-06-10 }}) Table III
* [[Jeffrey Weeks (mathematician)|Jeffrey R. Weeks]] ''The Shape of Space, 2nd edition'' {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I, II)
* George Maxwell, ''Sphere Packings and Hyperbolic Reflection Groups'', JOURNAL OF ALGEBRA 79,78-97 (1982) [http://www.sciencedirect.com/science/article/pii/0021869382903180]
* Hao Chen, Jean-Philippe Labbé, ''Lorentzian Coxeter groups and Boyd-Maxwell ball packings'', (2013)[
* [https://arxiv.org/abs/1511.02851 Visualizing Hyperbolic Honeycombs arXiv:1511.02851] Roice Nelson, Henry Segerman (2015)
==External links==
* [https://www.youtube.com/watch?v=GRo_FQm2KRc Hyperbolic Catacombs Carousel: {3,
*[[John Baez]], ''Visual insights'': [http://blogs.ams.org/visualinsight/2014/08/01/733-honeycomb/ {7,3,3} Honeycomb] (2014/08/01) [http://blogs.ams.org/visualinsight/2014/08/14/733-honeycomb-meets-plane-at-infinity/ {7,3,3} Honeycomb Meets Plane at Infinity] (2014/08/14)
* [[Danny Calegari]], [http://lamington.wordpress.com/2014/03/04/kleinian-a-tool-for-visualizing-kleinian-groups/Kleinian Kleinian, a tool for visualizing Kleinian groups, Geometry and the Imagination] 4 March 2014. [https://web.archive.org/web/20161109004910/http://math.uchicago.edu/~dannyc/papers/kleinian_mtf_Feb_2014.pdf]
[[Category:
|