Content deleted Content added
Prettify |
m v2.05 - Fix errors for CW project (DEFAULTSORT missing for titles with special letters) |
||
(46 intermediate revisions by 6 users not shown) | |||
Line 1:
{{Short description|Algorithm for evaluating polynomials}}
== Algorithm ==
Line 10 ⟶ 9:
=== Preliminaries ===
Consider an arbitrary polynomial <math>p \in \mathbb{R}[x]</math> of [[Degree of a polynomial|degree]] <math>n</math>. Assume that <math>n \geq 3</math>. Define <math>m</math> such that: if <math>n</math> is odd then <math>n = 2m+1</math>, and if <math>n</math> is even then <math>n = 2m+2</math>.<ref name="eve1964"/>
Unless otherwise stated, all variables in this article represent either [[real
Again, the goal is to create an algorithm that returns <math>p(x)</math> given any <math>x</math>. The algorithm is allowed to depend on the polynomial <math>p</math> itself, since its coefficients are known in advance.<ref name="knuth1962"/>
=== Overview ===
Line 24 ⟶ 23:
<math display="block"> p(x) = q(x) \cdot (x^2 - \alpha) + (\beta x + \gamma), </math>
where <math>x^2 - \alpha</math> is the divisor. Picking a value for <math>\alpha</math> fixes both the quotient <math>q</math> and the coefficients in the remainder <math>\beta</math> and <math>\gamma</math>.
<math display="block"> p(x) = q(x) \cdot (x^2 - \alpha) + \gamma. </math>
<math display="block"> p(x) = \left( \left(
After <math>m</math> recursive calls, the quotient <math>
==== "Preconditioning" ====
For arbitrary <math>p</math>, it may not be possible to force <math>\beta = 0</math> at every step of the recursion.<ref name="knuth1962"/>
<math display="block"> p(x) = p^e(x^2) + x \cdot p^o(x^2). </math>
If every [[Zero of a function#Polynomial roots|root]] of <math>p^o</math> is real, then it is possible to write <math>p</math> in the form given above. Each <math>\alpha_i</math> is a different root of <math>p^o</math>, counting [[Multiplicity (mathematics)#Multiplicity of a root of a polynomial|multiple roots]] as distinct.<ref name="overill1997"/> Furthermore, if
Ultimately, it may be necessary to "precondition" <math>p</math> by shifting it {{--}} by setting <math>p(x) \gets p(x + t)</math> for some <math>t</math> {{--}} to endow it with the structure that
=== Preprocessing step ===
The following algorithm is run once for a
<div style="margin-left: 35px;">
{{framebox|blue}}
* Let <math>r_1, \cdots, r_n \in \mathbb{C}</math> be the complex roots of <math>p</math>, sorted in descending order by real part
*
*
<hr/>
* Let <math>
* Let <math>\alpha_1, \cdots \alpha_m \in \mathbb{R}</math> be the roots of <math>p^o</math>. All of its roots will be real.
<hr/>
* Initialize <math>q \gets p</math>
* For <math>i \gets 1, \cdots, m</math>:
** Divide <math>
** Set <math>q \gets q^\prime</math>
<hr/> * ''Output:'' The derived values <math>t</math>, <math>\alpha_1, \cdots, \alpha_m</math>, and <math>\gamma_1, \cdots, \gamma_m</math>; as well as the base-case polynomial <math> {{frame-footer}}
</div>
==== Better choice of t ====
While any <math>t \geq \text{Re}(r_2)</math> can work, it is possible to remove one addition during evaluation if <math>t</math> is also chosen such that two roots of <math>p(x + t)</math> are symmetric about the origin. In that case, <math>\alpha_1</math> can be chosen such that the shifted polynomial has a factor of <math>x^2 - \alpha_1</math>, so <math>\gamma_1 = 0</math>. It is always possible to find such a <math>t</math>.<ref name="eve1964"/>
One possible algorithm for choosing <math>t</math> is:{{cn|date=July 2025}}
<div style="margin-left: 35px;">
{{framebox|blue}}
* If <math>r_1 \in \mathbb{R}</math>:
** If <math>r_2 \in \mathbb{R}</math>: <math display="inline">t = \tfrac{1}{2} (r_1 + r_2)</math>
** Else: <math>t = \text{Re}(r_2)</math>
* Else: <math>t = \text{Re}(r_1)</math>
{{frame-footer}}
</div>
Line 65 ⟶ 82:
=== Evaluation step ===
The following algorithm evaluates <math>p</math> at some, now known, point <math>x</math>.<ref
<div style="margin-left: 35px;">
== Notes ==▼
{{framebox|blue}}
* Set <math>x \gets x - t</math>
* Let <math>s = x^2</math>. Compute this once so it can be reused.
<hr/>
* Compute <math>y \gets q(x)</math> using [[Horner's method]]
* For <math>i \gets m, \cdots, 2, 1</math>:
** Let <math>y \gets y \cdot (s - \alpha_i) + \gamma_i</math>
* ''Output:'' <math>y</math>
{{frame-footer}}
</div>
Assuming <math>t</math> is chosen optimally, <math>\gamma_1 = 0</math>. So, the final iteration of the loop can instead run
<math display="block">y \gets y \cdot (s - \alpha_i),</math>
saving an addition.<ref name="eve1964"/>
In total, evaluation using the Knuth–Eve algorithm for a polynomial of degree <math>n</math> requires <math>n</math> additions and <math>\lfloor n/2 \rfloor + 2</math> multiplications, assuming <math>t</math> is chosen optimally.<ref name="eve1964"/>
No algorithm to evaluate a given polynomial of degree <math>n</math> can use fewer than <math>n</math> additions or fewer than <math>\lceil n/2 \rceil</math> multiplications during evaluation. This result assumes only addition and multiplication are allowed during both preprocessing and evaluation.<ref name="erickson2003"/>{{Better source needed|date=July 2025}}
The Knuth–Eve algorithm is not [[Condition number|well-conditioned]].<ref name="mesztenyi1967"/>
== Footnotes ==
{{Reflist|group=note}}
== References ==▼
{{reflist |refs=
<ref name="knuth1962">{{cite journal |last1=Knuth |first1=Donald |title=Evaluation of polynomials by computer |journal=Communications of the ACM |date=December 1962 |volume=5 |issue=12 |pages=
<ref name="eve1964">{{cite journal |last1=Eve |first1=
<ref name="overill1997">{{cite journal |last1=Overill |first1=Richard |title=Data parallel evaluation of univariate polynomials by the Knuth-Eve algorithm |journal=Parallel Computing |date=12 June 1997 |volume=23 |issue=13 |pages=
}}
{{DEFAULTSORT:Knuth-Eve algorithm}}
▲== References ==
[[Category:Algorithms]]
[[Category:Polynomials]]
▲* {{cite book |last1=Muller |first1=Jean-Michel |title=Elementary functions: Algorithms and implementation |date=17 November 2016 |publisher=Birkhäuser Boston |___location=Boston, MA |isbn=978-1-4899-7983-4 |doi=10.1007/978-1-4899-7983-4_5 |pages=82-84 |url=https://link.springer.com/chapter/10.1007/978-1-4899-7983-4_5#citeas |access-date=25 July 2025}}
[[Category:Algorithms and data structures]]
▲* {{cite journal |last1=Mesztenyi |first1=C. |title=Stable evaluation of polynomials |journal=Journal of Research of the National Bureau of Standards - B. Mathematics and Mathematical Physics |date=January 1967 |volume=71B |issue=1 |pages=11-17 |doi=10.6028/jres.071B.003 |url=https://nistdigitalarchives.contentdm.oclc.org/digital/collection/p16009coll6/id/87677 |access-date=25 July 2025}}
▲* {{cite web |last1=Erickson |first1=Jeff |title=Evaluating polynomials |url=https://jeffe.cs.illinois.edu/teaching/497/08-polynomials.pdf |website=CS 497: Concrete Models of Computation |publisher=University of Illinois Urbana-Champaign |access-date=25 July 2025}}
|