Field-effect transistor: Difference between revisions

Content deleted Content added
m copyedit "metal-oxide-semiconductor " → "metal–oxide–semiconductor" (MOS:ENBETWEEN)
m Removed repeated statement.
 
(One intermediate revision by one other user not shown)
Line 5:
The '''field-effect transistor''' ('''FET''') is a type of [[transistor]] that uses an [[electric field]] to control the [[Electric current|current]] through a [[semiconductor]]. It comes in two types: [[JFET|junction FET]] (JFET) and [[MOSFET|metal–oxide–semiconductor FET]] (MOSFET). FETs have three terminals: ''source'', ''gate'', and ''drain''. FETs control the current by the application of a [[voltage]] to the gate, which in turn alters the [[Electrical resistivity and conductivity|conductivity]] between the drain and source.
 
FETs are also known as '''unipolar transistors''' since they involve single-carrier-type operation. That is, FETs use either [[electron]]s (n-channel) or [[hole (semiconductor)|hole]]s (p-channel) as [[charge carrier]]s in their operation, but not both. Many different types of field effect transistors exist. Field effect transistors generally display very [[High impedance|high input impedance]] at low frequencies. The most widely used field-effect transistor is the [[MOSFET]] (metal–oxide–semiconductor field-effect transistor).
 
==History==
Line 33:
Following this research, [[Mohamed Atalla]] and [[Dawon Kahng]] proposed a silicon MOS transistor in 1959<ref name="Bassett222">{{cite book |last1=Bassett |first1=Ross Knox |url=https://books.google.com/books?id=UUbB3d2UnaAC&pg=PA22 |title=To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology |date=2007 |publisher=[[Johns Hopkins University Press]] |isbn=978-0-8018-8639-3 |pages=22–23}}</ref> and successfully demonstrated a working MOS device with their Bell Labs team in 1960.<ref>{{cite journal |last1=Atalla |first1=M. |author1-link=Mohamed Atalla |last2=Kahng |first2=D. |author2-link=Dawon Kahng |date=1960 |title=Silicon-silicon dioxide field induced surface devices |journal=IRE-AIEE Solid State Device Research Conference}}</ref><ref>{{cite journal |title=1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated |url=https://www.computerhistory.org/siliconengine/metal-oxide-semiconductor-mos-transistor-demonstrated/ |journal=The Silicon Engine |publisher=[[Computer History Museum]] |access-date=2023-01-16}}</ref> Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and H. K. Gummel and R. Lindner who characterized the device.<ref>{{Cite journal |last=KAHNG |first=D. |date=1961 |title=Silicon-Silicon Dioxide Surface Device |url=https://doi.org/10.1142/9789814503464_0076 |journal=Technical Memorandum of Bell Laboratories|pages=583–596 |doi=10.1142/9789814503464_0076 |isbn=978-981-02-0209-5 |url-access=subscription }}</ref><ref>{{Cite book |last=Lojek |first=Bo |title=History of Semiconductor Engineering |date=2007 |publisher=Springer-Verlag Berlin Heidelberg |isbn=978-3-540-34258-8 |___location=Berlin, Heidelberg |page=321}}</ref>
 
With its [[MOSFET scaling|high scalability]],<ref>{{cite journal |last1=Motoyoshi |first1=M. |s2cid=29105721 |title=Through-Silicon Via (TSV) |journal=Proceedings of the IEEE |date=2009 |volume=97 |issue=1 |pages=43–48 |doi=10.1109/JPROC.2008.2007462 |issn=0018-9219}}</ref> and much lower power consumption and higher density than bipolar junction transistors,<ref>{{cite news |title=Transistors Keep Moore's Law Alive |url=https://www.eetimes.com/author.asp?section_id=36&doc_id=1334068 |access-date=18 July 2019 |work=[[EETimes]] |date=12 December 2018}}</ref> the MOSFET made it possible to build [[Large scale integration|high-density]] integrated circuits.<ref>{{cite web |title=Who Invented the Transistor? |url=https://www.computerhistory.org/atchm/who-invented-the-transistor/ |website=[[Computer History Museum]] |date=4 December 2013 |access-date=20 July 2019}}</ref> The MOSFET is also capable of handling higher power than the JFET.<ref>{{cite book |last1=Duncan |first1=Ben |title=High Performance Audio Power Amplifiers |date=1996 |publisher=[[Elsevier]] |isbn=978-0-08-050804-7 |url=https://books.google.com/books?id=-5UPyE6dcWgC&pg=PA177 |page=177}}</ref> The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.<ref name="Moskowitz" /> The MOSFET thus became the most common type of transistor in computers, electronics,<ref name="kahng">{{cite web |title=Dawon Kahng |url=https://www.invent.org/inductees/dawon-kahng |access-date=27 June 2019 |website=[[National Inventors Hall of Fame]]}}</ref> and [[communications technology]] (such as [[smartphones]]).<ref name="uspto">{{cite web |title=Remarks by Director Iancu at the 2019 International Intellectual Property Conference |url=https://www.uspto.gov/about-us/news-updates/remarks-director-iancu-2019-international-intellectual-property-conference |website=[[United States Patent and Trademark Office]] |date=June 10, 2019 |access-date=20 July 2019 |archive-date=17 December 2019 |archive-url=https://web.archive.org/web/20191217200937/https://www.uspto.gov/about-us/news-updates/remarks-director-iancu-2019-international-intellectual-property-conference |url-status=dead }}</ref> The [[US Patent and Trademark Office]] calls it a "groundbreaking invention that transformed life and culture around the world".<ref name="uspto" />
 
In 1948, Bardeen and Brattain patented the progenitor of MOSFET, an insulated-gate FET (IGFET) with an inversion layer. Their patent and the concept of an inversion layer, forms the basis of CMOS technology today.<ref>{{cite book |author=Howard R. Duff |title=AIP Conference Proceedings |date=2001 |volume=550 |pages=3–32 |chapter=John Bardeen and transistor physics |doi=10.1063/1.1354371 |doi-access=free}}</ref> [[CMOS]] (complementary MOS), a semiconductor device fabrication process for MOSFETs, was developed by [[Chih-Tang Sah]] and [[Frank Wanlass]] at [[Fairchild Semiconductor]] in 1963.<ref name="computerhistory1963">{{cite web |title=1963: Complementary MOS Circuit Configuration is Invented |url=https://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/ |website=[[Computer History Museum]] |access-date=6 July 2019}}</ref><ref>{{US patent|3102230}}, filed in 1960, issued in 1963</ref> The first report of a [[floating-gate MOSFET]] was made by Dawon Kahng and [[Simon Sze]] in 1967.<ref>D. Kahng and S. M. Sze, "A floating gate and its application to memory devices", ''The Bell System Technical Journal'', vol. 46, no. 4, 1967, pp. 1288–1295</ref> The concept of a [[double-gate]] [[thin-film transistor]] (TFT) was proposed by H. R. Farrah ([[Bendix Corporation]]) and R. F. Steinberg in 1967.<ref name="FarrahSteinberg">{{cite journal |last1=Farrah |first1=H. R. |last2=Steinberg |first2=R. F. |date=February 1967 |title=Analysis of double-gate thin-film transistor |journal=IEEE Transactions on Electron Devices |volume=14 |issue=2 |pages=69–74 |bibcode=1967ITED...14...69F |doi=10.1109/T-ED.1967.15901}}</ref> A [[double-gate]] MOSFET was first demonstrated in 1984 by [[Electrotechnical Laboratory]] researchers Toshihiro Sekigawa and Yutaka Hayashi.<ref>{{cite book |last1=Colinge |first1=J.P. |title=FinFETs and Other Multi-Gate Transistors |date=2008 |publisher=Springer Science & Business Media |isbn=978-0-387-71751-7 |page=11 |url=https://books.google.com/books?id=t1ojkCdTGEEC&pg=PA11}}</ref><ref>{{cite journal |last1=Sekigawa |first1=Toshihiro |last2=Hayashi |first2=Yutaka |title=Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate |journal=Solid-State Electronics |date=1 August 1984 |volume=27 |issue=8 |pages=827–828 |doi=10.1016/0038-1101(84)90036-4 |bibcode=1984SSEle..27..827S |issn=0038-1101}}</ref> [[FinFET]] (fin field-effect transistor), a type of 3D non-planar [[Multigate device|multi-gate]] MOSFET, originated from the research of Digh Hisamoto and his team at [[Hitachi|Hitachi Central Research Laboratory]] in 1989.<ref>{{cite web |title=IEEE Andrew S. Grove Award Recipients |url=https://www.ieee.org/about/awards/bios/grove-recipients.html |archive-url=https://web.archive.org/web/20180909112404/https://www.ieee.org/about/awards/bios/grove-recipients.html |url-status=dead |archive-date=September 9, 2018 |website=[[IEEE Andrew S. Grove Award]] |publisher=[[Institute of Electrical and Electronics Engineers]] |access-date=4 July 2019}}</ref><ref>{{cite web |title=The Breakthrough Advantage for FPGAs with Tri-Gate Technology |url=https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01201-fpga-tri-gate-technology.pdf |publisher=[[Intel]] |year=2014 |access-date=4 July 2019}}</ref>