Importance sampling: Difference between revisions

Content deleted Content added
Basic theory: Fixed typo L -> Y
Citation bot (talk | contribs)
Altered url. URLs might have been anonymized. Added bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Monte Carlo methods | #UCB_Category 9/65
 
(2 intermediate revisions by 2 users not shown)
Line 5:
<!-- '''E'''[''X;P''] / \mathbf{E}[X;P] represents the expectation of ''X''. -->
 
Let <math>X\colon \Omega\to \mathbb{R}</math> be a [[random variable]] in some [[probability space]] <math>(\Omega,\mathcal{F},\mathbb{P})</math>. We wish to estimate the [[expected value]] of <math>X</math> under <math>\mathbb{P}</math>, denoted <math>\mathbb{E}_\mathbb{P}[X]</math>. If we have statistically independent random samples <math>X_1, \ldots, X_n</math>, generated according to <math>\mathbb{P}</math>, then an empirical estimate of <math>\mathbb{E}_{\mathbb{P}}[X]</math> is just
 
: <math>
Line 38:
 
: <math>\mathbb{E}_{\mathbb{P}}[X] = \int_{-\infty}^{+\infty} x\,\mathbb{P}(X\in[x;x+dx]) </math>
therefore, a good probability change <math>\mathbb{Q}</math> in importance sampling will redistribute the law of <math>X</math> so that its samples' frequencies are sorted directly according to their weightscontributions in <math>\mathbb{E}_{\mathbb{P}}[X]</math> as opposed to <math>\mathbb{E}_{\mathbb{P}}[1]</math>. Hence the name "importance sampling."
 
Importance sampling is often used as a [[Monte Carlo integration|Monte Carlo integrator]].
When <math>\mathbb{P}</math> is the uniform distribution over <math>\Omega =\mathbb{R}</math>, the expectation <math>\mathbb{E}_{\mathbb{P}}[X]</math> corresponds to the integral of the real function <math>X\colon \mathbb{R}\to\mathbb{R}</math>.
 
 
== Application to probabilistic inference ==
Line 140 ⟶ 139:
=== Evaluation of importance sampling ===
 
In order to identify successful importance sampling techniques, it is useful to be able to quantify the run-time savings due to the use of the importance sampling approach. The performance measure commonly used is <math>\sigma^2_{MC} / \sigma^2_{IS} \,</math>, and this can be interpreted as the speed-up factor by which the importance sampling estimator achieves the same precision as the MC estimator. This has to be computed empirically since the estimator variances are not likely to be analytically possible when their mean is intractable. Other useful concepts in quantifying an importance sampling estimator are the variance bounds and the notion of asymptotic efficiency. One related measure is the so-called '''Effective Sample Size''' '''(ESS)'''.<ref>{{Cite journal|last1=Martino|first1=Luca|last2=Elvira|first2=Víctor|last3=Louzada|first3=Francisco|title=Effective sample size for importance sampling based on discrepancy measures|journal=Signal Processing|volume=131|pages=386–401|doi=10.1016/j.sigpro.2016.08.025|arxiv=1602.03572|year=2017|bibcode=2017SigPr.131..386M |s2cid=26317735 }}</ref>
 
=== Variance cost function ===
Line 149 ⟶ 148:
 
===Multiple and adaptive importance sampling ===
When different proposal distributions, <math>g_i(x)</math> , <math>i=1,\ldots,n,</math> are jointly used for drawing the samples <math>x_1, \ldots, x_n, </math> different proper weighting functions can be employed (e.g., see <ref>{{Cite book|publisher = ACM|date = 1995-01-01|___location = New York, NY, USA|isbn = 978-0-89791-701-8|pages = [https://archive.org/details/computergraphics00sigg/page/419 419–428]|doi = 10.1145/218380.218498|first1 = Eric|last1 = Veach|first2 = Leonidas J.|last2 = Guibas| title=Proceedings of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH '95 | chapter=Optimally combining sampling techniques for Monte Carlo rendering |citeseerx = 10.1.1.127.8105| s2cid=207194026 |chapter-url = https://archive.org/details/computergraphics00sigg/page/419}}</ref><ref>{{Cite journal|title = Safe and Effective Importance Sampling|journal = Journal of the American Statistical Association|date = 2000-03-01|issn = 0162-1459|pages = 135–143|volume = 95|issue = 449|doi = 10.1080/01621459.2000.10473909|first1 = Art|last1 = Owen|first2 = Yi Zhou|last2 = Associate|citeseerx = 10.1.1.36.4536| s2cid=119761472 }}</ref><ref>{{Cite journal|title = Efficient Multiple Importance Sampling Estimators|journal = IEEE Signal Processing Letters|date = 2015-10-01|issn = 1070-9908|pages = 1757–1761|volume = 22|issue = 10|doi = 10.1109/LSP.2015.2432078|first1 = V.|last1 = Elvira|first2 = L.|last2 = Martino|first3 = D.|last3 = Luengo|first4 = M.F.|last4 = Bugallo|arxiv = 1505.05391|bibcode = 2015ISPL...22.1757E| s2cid=14504598 }}</ref><ref>{{Cite journal|last1=Elvira|first1=Víctor|last2=Martino|first2=Luca|last3=Luengo|first3=David|last4=Bugallo|first4=Mónica F.|title=Improving population Monte Carlo: Alternative weighting and resampling schemes|journal=Signal Processing|volume=131|pages=77–91|doi=10.1016/j.sigpro.2016.07.012|arxiv=1607.02758|year=2017|bibcode=2017SigPr.131...77E |s2cid=205171823 }}</ref>). In an adaptive setting, the proposal distributions, <math>g_{i,t}(x)</math> , <math>i=1,\ldots,n,</math> and <math>t=1,\ldots,T,</math> are updated each iteration <math>t</math> of the adaptive importance sampling algorithm. Hence, since a population of proposal densities is used, several suitable combinations of sampling and weighting schemes can be employed.<ref>{{Cite journal|title = Population Monte Carlo|journal = Journal of Computational and Graphical Statistics|date = 2004-12-01|issn = 1061-8600|pages = 907–929|volume = 13|issue = 4|doi = 10.1198/106186004X12803|first1 = O.|last1 = Cappé|first2 = A.|last2 = Guillin|first3 = J. M.|last3 = Marin|first4 = C. P.|last4 = Robert| s2cid=119690181 }}</ref><ref>{{Cite journal|last1=Martino|first1=L.|last2=Elvira|first2=V.|last3=Luengo|first3=D.|last4=Corander|first4=J.|date=2017-05-01|title=Layered adaptive importance sampling|journal=Statistics and Computing|language=en|volume=27|issue=3|pages=599–623|doi=10.1007/s11222-016-9642-5|issn=0960-3174|arxiv=1505.04732|s2cid=2508031 }}</ref><ref>{{Cite journal|title = Adaptive importance sampling in general mixture classes|journal = Statistics and Computing|date = 2008-04-25|issn = 0960-3174|pages = 447–459|volume = 18|issue = 4|doi = 10.1007/s11222-008-9059-x|first1 = Olivier|last1 = Cappé|first2 = Randal|last2 = Douc|first3 = Arnaud|last3 = Guillin|first4 = Jean-Michel|last4 = Marin|first5 = Christian P.|last5 = Robert|arxiv = 0710.4242| s2cid=483916 }}</ref><ref>{{Cite journal|title = Adaptive Multiple Importance Sampling|journal = Scandinavian Journal of Statistics|date = 2012-12-01|issn = 1467-9469|pages = 798–812|volume = 39|issue = 4|doi = 10.1111/j.1467-9469.2011.00756.x|first1 = Jean-Marie|last1 = Cornuet|first2 = Jean-Michel|last2 = Marin|first3 = Antonietta|last3 = Mira|author3-link=Antonietta Mira|first4 = Christian P.|last4 = Robert|arxiv = 0907.1254| s2cid=17191248 }}</ref><ref>{{Cite journal|title = An Adaptive Population Importance Sampler: Learning From Uncertainty|journal = IEEE Transactions on Signal Processing|date = 2015-08-01|issn = 1053-587X|pages = 4422–4437|volume = 63|issue = 16|doi = 10.1109/TSP.2015.2440215|first1 = L.|last1 = Martino|first2 = V.|last2 = Elvira|first3 = D.|last3 = Luengo|first4 = J.|last4 = Corander|bibcode = 2015ITSP...63.4422M|citeseerx = 10.1.1.464.9395| s2cid=17017431 }}</ref><ref>{{Cite journal|title = Adaptive importance sampling in signal processing|journal = Digital Signal Processing|date = 2015-12-01|pages = 36–49|volume = 47|series = Special Issue in Honour of William J. (Bill) Fitzgerald|doi = 10.1016/j.dsp.2015.05.014|first1 = Mónica F.|last1 = Bugallo|first2 = Luca|last2 = Martino|first3 = Jukka|last3 = Corander| bibcode=2015DSP....47...36B |doi-access = free}}</ref><ref>{{Cite journal|last1=Bugallo|first1=M. F.|last2=Elvira|first2=V.|last3=Martino|first3=L.|last4=Luengo|first4=D.|last5=Miguez|first5=J.|last6=Djuric|first6=P. M.|date=July 2017|title=Adaptive Importance Sampling: The past, the present, and the future|journal=IEEE Signal Processing Magazine|volume=34|issue=4|pages=60–79|doi=10.1109/msp.2017.2699226|issn=1053-5888|bibcode=2017ISPM...34...60B|s2cid=5619054 }}</ref>
 
== See also ==
Line 170 ⟶ 169:
*{{cite book |title=Sequential Monte Carlo Methods in Practice |first1=A. |last1=Doucet |first2=N. |last2=de Freitas |first3=N. |last3=Gordon |publisher=Springer |year=2001 |isbn=978-0-387-95146-1 }}
*{{cite book |first1=M. |last1=Ferrari |first2=S. |last2=Bellini |title=ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240) |chapter=Importance sampling simulation of turbo product codes |volume=9 |pages=2773–2777 |year=2001 |doi=10.1109/ICC.2001.936655 |isbn=978-0-7803-7097-5 |s2cid=5158473 }}
*{{cite journal |first=Oleg |last=Mazonka |title=Easy as Pi: The Importance Sampling Method |journal=Journal of Reference |volume=16 |year=2016 |url=https://www.researchgate.net/publication/303859967_Easy_As_Pi_The_Importance_Sampling_Method303859967}}
*{{cite book |first=Tommy |last=Oberg |title=Modulation, Detection, and Coding |publisher=John Wiley & Sons |___location=New York |year=2001 }}
*{{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | ___location=New York | isbn=978-0-521-88068-8 | chapter=Section 7.9.1 Importance Sampling | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=411 | access-date=2011-08-12 | archive-date=2011-08-11 | archive-url=https://web.archive.org/web/20110811154417/http://apps.nrbook.com/empanel/index.html#pg=411 | url-status=dead }}