Jacket matrix: Difference between revisions

Content deleted Content added
PMHLEE (talk | contribs)
Link suggestions feature: 3 links added.
 
(44 intermediate revisions by 6 users not shown)
Line 1:
{{Short description|Square matrix that is a generalization of the Hadamard matrix}}
In [[mathematics]], a '''jacket matrix''' is a [[square symmetric matrix]] <math>A= (a_{ij})</math> of order ''n'' if its entries are non-zero and [[real number|real]], [[complex number|complex]], or from a [[finite field]], and [[File:Had_otr_jac.png|thumb|Hierarchy of matrix types]]
 
:<math>\ AB=BA=I_n </math>
Line 8 ⟶ 9:
where ''T'' denotes the [[transpose]] of the matrix.
 
In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:
 
:<math>\forall u,v \in \{1,2,\dots,n\}:~a_{iu},a_{iv} \neq 0, ~~~~ \sum_{i=1}^n a_{iu}^{-1}\,a_{iv} =
Line 18 ⟶ 19:
</math>
 
The jacket matrix is a generalization of the [[Hadamard matrix]]; it is a [[diagonal matrix|diagonal]] block-wise inverse matrix.
 
==Motivation==
Line 49 ⟶ 50:
<math>\mathbf {A_j}=\mathrm{diag}(A_1, A_2,.. A_n )</math>
denotes an mn x mn [[Block matrix|block diagonal]] Jacket matrix.
:<math>
J_4 = \left[ \begin{array}{rrrr} I_2 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\
Line 69 ⟶ 70:
 
== Example 4. ==
 
A block circulant Jacket matrix (BCJM) is defined by [3, 5]
Consider <math>[\mathbf {A}]_N</math> be 2x2 block matrices of order <math>N=2p</math>
:<math>
[\mathbf {C}_{NA}]_N= \left[ \begin{array}{rrrrrr} \mathbf {C}_{0A}_0 & \mathbf {CA}_{1} _1 \\ \mathbf {C}_{1A}_1 & \mathbf {C}_{0A}_0 \\ \end{array} \right],</math>.
be 2x2 block matrix of order N=2p. If <math>[\mathbf {C}_{0A}_0]_p</math> and <math>[\mathbf {C}_{1A}_1]_p </math> are pxp Jacket matricesmatrix, then <math>[\mathbf{C}A]_N </math> is thea Jacketblock [[circulant matrix]] if and only if <math>\mathbf {A}_0 \mathbf {A}_1^{rt}+\mathbf {A}_1^{rt}\mathbf {A}_0</math>, where rt denotes the reciprocal transpose.
:<math>\ \mathbf{C}_{0}\mathbf{C}_{1}^{RT}+\mathbf{C}_{1}^{RT}\mathbf{C}_{0}=0. </math>
where RT is reciprocal transpose.
 
== Example 5. ==
Let <math>\mathbf {A}_0= \left[ \begin{array}{rrrr} -1 & 1 \\ 1 & 1\\ \end{array} \right],</math> and <math>\mathbf {A}_1= \left[ \begin{array}{rrrr} -1 & -1 \\ -1 & 1\\ \end{array} \right],</math>, then the matrix <math>[\mathbf {A}]_N</math> is given by
If p=2, a block circulant Jacket matrix (BCJM) <math>\mathbf{C}_{N} </math>is given by
 
:<math>
[\mathbf {C}_{4A}]_4= \left[ \begin{array}{rrrrrr} \mathbf {C}_{0A}_0 & \mathbf {CA}_{1} _1 \\ \mathbf {C}_{1A}_0 & \mathbf {C}_{0A}_1 \\ \end{array} \right]=\left[
=\left[ \begin{array}{rrrr} -1 & 1 & a-1 & -a1\\ 1 & 1 & -1 & 1 \\[6pt] -1 & 1 & -1 & -1/a \\ 1 & 1 & -1/a & 1 \\[6pt \end{array} \right],</math>,
:<math>[\mathbf {A}]_4 </math>⇒<math>
a & -a & 1 & 1 \\[6pt] -1/a & -1/a & 1 & -1\\[6pt] \end{array}
\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T, </math>
\right]_{a=1}=\left[
where ''U'', ''C'', ''A'', ''G'' denotes the amount of the DNA nucleobases and the matrix <math>[\mathbf {A}]_4 </math> is the block circulant Jacket matrix which leads to the principle of the Antagonism with Nirenberg [[Genetic code|Genetic Code]] matrix.
\begin{array}{rrrr} 1 & 1 & 0 & 0 \\[6pt] 1 & -1 & 0 & 0 \\[6pt]
0 & 0 & 1 & 1 \\[6pt] 0 & 0 & 1 & -1\\[6pt] \end{array}
\right]+\left[
\begin{array}{rrrr} 0 & 0 & 1 & -1 \\[6pt] 0 & 0 & -1 & -1 \\[6pt]
1 & -1 & 0 & 0 \\[6pt] -1 & -1 & 0 & 0\\[6pt] \end{array}
\right]=\left[
\begin{array}{rrrr} 1 & 1 & 1 & -1 \\[6pt] 1 & -1 & -1 & -1 \\[6pt]
1 & -1 & 1 & 1 \\[6pt] -1 & -1 & 1 & -1\\[6pt] \end{array}
\right].</math>
 
where <math> \mathbf{C}_{0} </math> and <math> \mathbf{C}_{1} </math> are the Hadamard matrix.
 
== References ==
Line 104 ⟶ 93:
[3] Moon Ho Lee, ''Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing'', LAP LAMBERT Publishing, Germany, Nov. 2012.
 
[54] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix],", US patent, US9356671no. US 009356671B1, May, 2016.
[4] Moon Ho Lee, "[http://dx.doi.org/10.5772/intechopen.102342 The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix]", ''Matrix Theory - Classics and Advances'', edited by Mykhaylo I Andriychuk, IntechOpen, June 2022.
 
[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].
[5] Moon Ho Lee, "MIMO Communication Method and System using the Block Circulant Jacket Matrix]", US patent, US9356671.
 
==External links==
Line 112 ⟶ 101:
* [https://web.archive.org/web/20110722132459/http://mdmc.chonbuk.ac.kr/english/images/Jacket%20matrix%20and%20its%20fast%20algorithm%20for%20wireless%20signal%20processing.pdf Jacket Matrix and Its Fast Algorithms for Cooperative Wireless Signal Processing]
* [https://www.researchgate.net/publication/342195507_Jacket_Matrices_-Construction_and_Its_Applications_for_Fast_Cooperative_Wireless_Signal_Processing: Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing]
 
[[Category:Matrices (mathematics)]]