Jacket matrix: Difference between revisions

Content deleted Content added
No edit summary
Link suggestions feature: 3 links added.
 
(18 intermediate revisions by 5 users not shown)
Line 1:
{{Short description|Square matrix that is a generalization of the Hadamard matrix}}
In [[mathematics]], a '''jacket matrix''' is a [[square symmetric matrix]] <math>A= (a_{ij})</math> of order ''n'' if its entries are non-zero and [[real number|real]], [[complex number|complex]], or from a [[finite field]], and [[File:Had_otr_jac.png|thumb|Hierarchy of matrix types]]
 
:<math>\ AB=BA=I_n </math>
Line 8 ⟶ 9:
where ''T'' denotes the [[transpose]] of the matrix.
 
In other words, the inverse of a jacket matrix is determined by its element-wise or block-wise inverse. The definition above may also be expressed as:
 
:<math>\forall u,v \in \{1,2,\dots,n\}:~a_{iu},a_{iv} \neq 0, ~~~~ \sum_{i=1}^n a_{iu}^{-1}\,a_{iv} =
Line 18 ⟶ 19:
</math>
 
The jacket matrix is a generalization of the [[Hadamard matrix]]; it is a [[diagonal matrix|diagonal]] block-wise inverse matrix.
 
==Motivation==
Line 49 ⟶ 50:
<math>\mathbf {A_j}=\mathrm{diag}(A_1, A_2,.. A_n )</math>
denotes an mn x mn [[Block matrix|block diagonal]] Jacket matrix.
:<math>
J_4 = \left[ \begin{array}{rrrr} I_2 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\
Line 67 ⟶ 68:
 
'''A'''·'''B''' = '''B'''·'''A''' = '''I'''
== Example 3. ==
 
== Example 34. ==
 
Consider <math>[\mathbf {A}]_N</math> be 2x2 block matrices of order <math>N=2p</math>
be 2x2 block matrices of order <math>N=2p</math>
:<math>
[\mathbf {A}]_N= \left[ \begin{array}{rrrr} \mathbf {A}_0 \\ & \mathbf {A}_1 \\ \mathbf {A}_1 \\& \mathbf {A}_0 \\ \end{array} \right],</math>.
If <math>[\mathbf {A}_0]_p</math> and <math>[\mathbf {A}_1]_p</math> are pxp Jacket matrix, then <math>[A]_N</math> is a block [[circulant matrix]] if and only if <math>\mathbf {A}_0 \mathbf {A}_1^{rt}+\mathbf {A}_1^{rt}\mathbf {A}_0</math>, where rt denotes the reciprocal transpose.
 
== Example 5. ==
Let <math>\mathbf {A}_0= \left[ \begin{array}{rrrr} -1 & 1 \\ 1 & 1\\ \end{array} \right],</math> and <math>\mathbf {A}_1= \left[ \begin{array}{rrrr} -1 & -1 \\ -1 & 1\\ \end{array} \right],</math>, then the matrix <math>[\mathbf {A}]_N</math> is given by
:<math>
[\mathbf {A}]_4= \left[ \begin{array}{rrrr} \mathbf {A}_0 & \mathbf {A}_1 \\ \mathbf {A}_0 & \mathbf {A}_1 \\ \end{array} \right]
=\left[ \begin{array}{rrrr} -1 & 1 & -1 & -1\\ 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ \end{array} \right],</math>,
:<math>[\mathbf {A}]_4 </math>⇒<math>
\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]\otimes\left[ \begin{array}{rrrr} U & C & A & G\\ \end{array} \right]^T, </math>
where ''U'', ''C'', ''A'', ''G'' denotes the amount of the DNA nucleobases and the matrix <math>[\mathbf {A}]_4 </math> is the block circulant Jacket matrix which leads to the principle of the Antagonism with Nirenberg [[Genetic code|Genetic Code]] matrix.
 
== References ==
Line 83 ⟶ 92:
 
[3] Moon Ho Lee, ''Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing'', LAP LAMBERT Publishing, Germany, Nov. 2012.
 
[4] Moon Ho Lee, et. al., "MIMO Communication Method and System using the Block Circulant Jacket Matrix," US patent, no. US 009356671B1, May, 2016.
 
[5] S. K. Lee and M. H. Lee, “The COVID-19 DNA-RNA Genetic Code Analysis Using Information Theory of Double Stochastic Matrix,” IntechOpen, Book Chapter, April 17, 2022. [Available in Online: https://www.intechopen.com/chapters/81329].
 
==External links==
Line 88 ⟶ 101:
* [https://web.archive.org/web/20110722132459/http://mdmc.chonbuk.ac.kr/english/images/Jacket%20matrix%20and%20its%20fast%20algorithm%20for%20wireless%20signal%20processing.pdf Jacket Matrix and Its Fast Algorithms for Cooperative Wireless Signal Processing]
* [https://www.researchgate.net/publication/342195507_Jacket_Matrices_-Construction_and_Its_Applications_for_Fast_Cooperative_Wireless_Signal_Processing: Jacket Matrices: Constructions and Its Applications for Fast Cooperative Wireless Signal Processing]
 
[[Category:Matrices (mathematics)]]