Content deleted Content added
review: rm potentially confusing example. use analog definition. rm tangential and unsourced. |
|||
(29 intermediate revisions by 17 users not shown) | |||
Line 7:
A '''programmable logic controller''' ('''PLC''') or '''programmable controller''' is an industrial [[computer]] that has been [[ruggedized]] and adapted for the control of manufacturing processes, such as [[assembly line]]s, machines, [[robotic]] devices, or any activity that requires high reliability, ease of programming, and process fault diagnosis.
PLCs can range from small modular devices with tens of [[Input/output|inputs and outputs]] (I/O)
PLCs were first developed in the automobile manufacturing industry to provide flexible, rugged and easily programmable controllers to replace hard-wired [[relay logic]] systems. [[Dick Morley]], who invented the first PLC, the Modicon 084, for [[General Motors]] in 1968, is considered the father of PLC.
Line 23:
In 1968, GM Hydramatic,<!--Don't link hydramatic transmission--> the [[automatic transmission]] division of [[General Motors]], issued a [[request for proposal]]s for an electronic replacement for hard-wired relay systems based on a white paper written by engineer Edward R. Clark. The winning proposal came from Bedford Associates from [[Bedford, Massachusetts]]. The result, built in 1969, was the first PLC and designated the ''084'', because it was Bedford Associates' eighty-fourth project.<ref name=":9">{{Harvnb|Laughton|Warne|2002|loc=chpt. 16}}</ref><ref name=":0">{{Cite web |url=https://www.automationmag.com/855-the-father-of-invention-dick-morley-looks-back-on-the-40th-anniversary-of-the-plc/ |title=The Father of Invention: Dick Morley Looks Back on the 40th Anniversary of the PLC |last=Dunn |first=Alison |date=2009-06-12 |website=Manufacturing Automation |access-date=2020-02-23 }}</ref>
Bedford Associates started a company, '''Modicon, Inc.''',<ref name="b677">{{cite book | last=Group | first=Career Communications | title=US Black Engineer & IT | publisher=Career Communications Group | date=1993 | url=https://books.google.com/books?id=pESCcEtfrusC&dq=modicon%2520inc&pg=PA42 | access-date=2025-06-09 | page=}}</ref> dedicated to developing, manufacturing, selling, and servicing this new product, which they named '''{{visible anchor|Modicon}}''' (standing for "modular digital controller"). One of the people who worked on that project was [[Dick Morley]], who is considered to be the father of the PLC.<ref name=":1">{{Cite web|url=https://www.isa.org/standards-and-publications/isa-publications/intech-magazine/2003/august/cover-story-50th-anniversary-leaders-of-the-pack/|title=Leaders of the pack|last=Strothman|first=Jim|date=2003-08-01|website=ISA|url-status=live|archive-url=https://web.archive.org/web/20170808184918/https://www.isa.org/standards-and-publications/isa-publications/intech-magazine/2003/august/cover-story-50th-anniversary-leaders-of-the-pack/|archive-date=2017-08-08|access-date=2020-02-24}}</ref> The Modicon brand was sold in 1977 to [[Gould Electronics]] and later to [[Schneider Electric]], its current owner.<ref name=":0" /> About this same time, Modicon created [[Modbus]], a data communications protocol to be used with its PLCs. Modbus has since become a standard open protocol commonly used to connect many industrial electrical devices.<ref>{{cite web |title=Mobus Networking Guide: Introduction |url=https://development.libelium.com/modbus_networking_guide/introduction |website=Libelium.com |access-date=27 October 2022 }}</ref>
One of the first Modicon 084 models built is now on display at Schneider Electric's facility in [[North Andover, Massachusetts]]. It was presented to Modicon by [[General Motors|GM]], when the unit was retired after nearly twenty years of uninterrupted service. Modicon used the 84 moniker at the end of its product range like Modicon Micro 84 and Modicon TSX CSY 84 until after the 984 made its appearance.<ref>{{cite book |last=Chakraborty |first=Kunal |title=Industrial Applications of Programmable Logic Controllers and SCADA |date=2016 |publisher=Anchor Academic Publishing |___location=Hamburg |isbn=978-3960670247 }}</ref>
===Allen-Bradley===
Line 33:
Many early PLC programming applications were not capable of graphical representation of the logic, and so it was instead represented as a series of logic expressions in some kind of Boolean format, similar to [[Boolean algebra]]. As programming terminals evolved, because ladder logic was a familiar format used for electro-mechanical control panels, it became more commonly used. Newer formats, such as state logic,<ref>{{cite web |url=https://control.com/technical-articles/state-machine-programming-in-ladder-logic/ |title=State Machine Programming in Ladder Logic |access-date=2024-08-18}}</ref> [[function block diagram]]s, and [[structured text]] exist. Ladder logic remains popular because PLCs solve the logic in a predictable and repeating sequence, and ladder logic allows the person writing the logic to see any issues with the timing of the logic sequence more easily than would be possible in other formats.<ref>{{cite web |title=Wrapping Your Head around Ladder Logic |date=27 August 2018 |url=https://www.dosupply.com/tech/2018/08/27/wrapping-your-head-around-ladder-logic/ |website=DoSupply.com |access-date=19 October 2020}}</ref>
Up to the mid-1990s, PLCs were programmed using proprietary programming panels or special-purpose programming [[Computer terminal|terminals]], which often had dedicated function keys representing the various logical elements of PLC programs.<ref name=":9" /> Some proprietary programming terminals displayed the elements of PLC programs as graphic symbols, but plain [[ASCII art|ASCII]] character representations of contacts, coils, and wires were common. Programs were stored on [[cassette tape cartridge]]s. Facilities for printing and documentation were minimal due to a lack of memory capacity. The oldest PLCs used [[magnetic-core memory]].<ref>{{
==Architecture==
Line 52:
There are two types of mechanical design for PLC systems. A ''single box'' (also called a ''brick'') is a small programmable controller that fits all units and interfaces into one compact casing, although, typically, additional expansion modules for inputs and outputs are available. The second design type{{snd}} a ''modular'' PLC{{snd}} has a chassis (also called a ''rack'') that provides space for modules with different functions, such as power supply, processor, selection of I/O modules and communication interfaces{{snd}} which all can be customized for the particular application.<ref>{{Harvnb|Bolton|2015|pp=12–13}}</ref> Several racks can be administered by a single processor and may have thousands of inputs and outputs. Either a special high-speed serial I/O link or comparable communication method is used so that racks can be distributed away from the processor, reducing the wiring costs for large plants.{{Citation needed|date=April 2020}}
===Discrete and analog signals===
[[Digital signal|Discrete (digital) signals]] can only take ''on'' or ''off'' value (1 or 0, ''true'' or ''false''). Examples of devices providing a discrete signal include [[limit switch]]es and [[photoelectric sensor]]s.<ref name=":8">{{Harvnb|Bolton|2015|pp=23–43}}</ref>
[[Analog signal]]s can use voltage or current that is analogous to the monitored variable and can take any value within their scale. Pressure, temperature, flow, and weight are often represented by analog signals. These are typically interpreted as integer values with various ranges of accuracy depending on the device and the number of bits available to store the data.<ref name=":8" /> For example, an analog 0 to 10 V or 4-20
===Redundancy===
Some special processes need to work permanently with minimum unwanted downtime. Therefore, it is necessary to design a system that is [[fault
==Programming==
[[File:Ladder temporizado.svg|thumb|upright=0.9|Example of a ladder diagram logic]]
Programmable logic controllers are intended to be used by engineers without a programming background. For this reason, a graphical programming language called [[
{{As of|2015|post=,}} the majority of PLC systems adhere to the [[IEC 61131-3]] standard that defines 2 textual programming languages: [[
Modern PLCs can be programmed in a variety of ways, from the relay-derived ladder logic to programming languages such as specially adapted dialects of [[BASIC]] and [[C (programming language)|C]].<ref>{{Cite web |title=Programmable logic controller for automation systems |url=https://www.isisvarese.edu.it/wp-content/uploads/2016/03/CLIL-5B-MEC-PLC.pdf |access-date=April 8, 2024 |website=www.isisvarese.edu.it}}</ref>
While the fundamental concepts of PLC programming are common to all manufacturers, differences in [[I/O
===Programming device===
Manufacturers develop programming software for their
PLC programs are typically written in a programming device, which can take the form of a desktop console, special software on a [[personal computer]], or a handheld programming device.<ref name=":7">{{Harvnb|Bolton|2015|pp=19–20}}</ref> Then, the program is downloaded to the PLC directly or over a network. It is stored either in non-volatile [[flash memory]] or battery-backed-up [[RAM]]. In some programmable controllers, the program is transferred from a personal computer to the PLC through a programming board that writes the program into a removable chip, such as [[EPROM]].▼
▲PLC programs are typically written in a programming device, which can take the form of a desktop console, special software on a [[personal computer]], or a handheld
▲Manufacturers develop programming software for their controllers. In addition to being able to program PLCs in multiple languages, they provide common features like hardware diagnostics and maintenance, software debugging, and offline simulation.<ref name=":7" />
===Simulation===
▲Incorrectly programmed PLC can result in lost productivity and dangerous conditions. Testing the project in simulation improves its quality, increases the level of safety associated with equipment and can save costly downtime during the installation and commissioning of automated control applications since many scenarios can be tried and tested before the system is activated.<ref name=":7" /><ref>{{cite book |last1=Lin |first1=Sally |url=https://books.google.com/books?id=CHYlTBxqrM8C&pg=PA553 |title=Advances in Computer Science, Environment, Ecoinformatics, and Education, Part III: International Conference, CSEE 2011, Wuhan, China, August 21-22, 2011. Proceedings |last2=Huang |first2=Xiong |date=9 August 2011 |publisher=Springer Science & Business Media |isbn=9783642233449 |pages=15 |via=Google Books }}</ref>
==Functionality==
[[File:Siemens Simatic S7-416-3.jpg|thumb|upright|PLC system in a rack, left-to-right: power supply
[[File:PLC Control Panel.png|thumb|upright|Control panel with PLC (gray elements in the center). The unit consists of separate elements, from left to right:
The main difference
The functionality of the PLC has evolved over the years to include sequential relay control, motion control, [[process control]], [[distributed control system]]s, and [[computer network|networking]]. The data handling, storage, processing power, and communication capabilities of some modern PLCs are approximately equivalent to [[desktop computer]]s. PLC-like programming combined with remote I/O hardware
===Basic functions===
The most basic function of a programmable logic controller is to emulate the functions of electromechanical relays.
More advanced instructions of the PLC may be implemented as functional blocks, which carry out some operation, such as manipulating internal variable, when enabled by a logical input and which produce outputs to signal, for example, completion or errors
▲More advanced instructions of the PLC may be implemented as functional blocks, which carry out some operation when enabled by a logical input and which produce outputs to signal, for example, completion or errors, while manipulating variables internally that may not correspond to discrete logic.
=== Communication ===
Line 167 ⟶ 162:
* [[Industrial control system]]
* [[PLC technician]]
==Notes==
{{Notelist}}
==References==
Line 191 ⟶ 189:
[[Category:Industrial automation]]
[[Category:Industrial computing]]
|