Phased array transmission was originally shown in 1905 by [[Nobel Prize|Nobel]] laureate [[Karl Ferdinand Braun]] who demonstrated enhanced transmission of [[radio]] waves in one direction.<ref>{{cite book |url=https://www.nobelprize.org/prizes/physics/1909/braun/lecture/|chapter=Electrical Oscillations and Wireless Telegraphy|title=Nobel Lectures, Physics 1901-1921|publisher=Elsevier|___location=Amsterdam|year=1967|orig-date=Delivered 11 December 1909|last=Braun|first=Karl Ferdinand|access-date=29 July 2023|via=nobelprize.org}} Braun's Nobel Prize lecture. The phased array section is on pages 239–240.</ref><ref>"Die Strassburger Versuche über gerichtete drahtlose Telegraphie" (The Strassburg experiments on directed wireless telegraphy), ''Elektrotechnische und Polytechnische Rundschau'' (Electrical technology and polytechnic review [a weekly]), (1 November 1905). This article is summarized (in German) in:
Adolf Prasch, ed., ''Die Fortschritte auf dem Gebiete der Drahtlosen Telegraphie'' [Progress in the field of wireless telegraphy] (Stuttgart, Germany: Ferdinand Enke, 1906), vol. 4, [https://books.google.com/books?id=ZAAMAAAAYAAJ&pg=RA1-PA184 pages 184–185].</ref> During [[World War II]], Nobel laureate [[Luis Walter Alvarez|Luis Alvarez]] used phased array transmission in a rapidly [[Beam steering|steerable]] [[radar]] system for "[[ground-controlled approach]]", a system to aid in the landing of aircraft. At the same time, the German GEMA incompany (German for ''Gesellschaft für elektroakustische und mechanische Apparate''<ref>{{Cite web |title=Geschichte der Elektrotechnik (History of Electronics) |url=https://www.vde.com/de/geschichte/karte/berlin/gema |access-date=2025-08-13 Germany|website=www.vde.com}}</ref>) built the [[Mammut radar|Mammut]] 1.<ref>http://www.100jahreradar.de/index.html?/gdr_5_deutschefunkmesstechnikim2wk.html {{webarchive|url=https://web.archive.org/web/20070929154159/http://www.100jahreradar.de/index.html?%2Fgdr_5_deutschefunkmesstechnikim2wk.html |date=2007-09-29 }} Mamut1 first early warning PESA Radar</ref> It was later adapted for [[radio astronomy]] leading to [[Nobel Prize for Physics|Nobel Prizes for Physics]] for [[Antony Hewish]] and [[Martin Ryle]] after several large phased arrays were developed at the [[University of Cambridge]] [[Interplanetary Scintillation Array]]. This design is also used for [[radar]], and is generalized in [[interferometry|interferometric]] radio antennas.
In 1966, most phased-array radars use ferrite phase shifters or traveling-wave tubes to dynamically adjust the phase.
The [[AN/SPY-1]] phased array radar, part of the [[Aegis Combat System]] deployed on modern U.S. [[cruisers]] and [[destroyers]], "is able to perform search, track and missile guidance functions simultaneously with a capability of over 100 targets."<ref>{{cite web|title=AEGIS Weapon System MK-7 |publisher=[[Jane's Information Group]] |date=2001-04-25 |url=http://www.janes.com/defence/naval_forces/news/misc/aegis010425.shtml |access-date=10 August 2006 |archive-url=https://web.archive.org/web/20060701055247/http://www.janes.com/defence/naval_forces/news/misc/aegis010425.shtml |archive-date=1 July 2006 |url-status=dead }}.</ref> Likewise, the [[Thales Herakles]] phased array multi-function radar used in service with [[France]] and [[Singapore]] has a track capacity of 200 targets and is able to achieve automatic target detection, confirmation and track initiation in a single scan, while simultaneously providing mid-course guidance updates to the [[MBDA Aster]] missiles launched from the ship.<ref>{{cite journal |last=Scott |first=Richard |date=April 2006 |title=Singapore Moves to Realise Its Formidable Ambitions|journal=Jane's Navy International |volume=111 |issue=4 |pages=42–49}}</ref> The [[German Navy]] and the [[Royal Dutch Navy]] have developed the [[Active Phased Array Radar]] System (APAR). The [[MIM-104 Patriot]] and other ground-based antiaircraft systems use phased array radar for similar benefits.
{{See also |SAMPSON |Active Phased Array Radar |SMART-L |Active Electronically Scanned Array |Aegis combat system |AN/SPY-1 |Passive electronically scanned array }} ▼
=== Sonar ===
Phased arrays are used in naval sonar, in active (transmit and receive) and passive (receive only) and hull-mounted and [[towed array sonar]].
One of first acoustic phased arrays was the German [[Gruppenhorchgerät]] device.
▲{{See also |SAMPSON |Active Phased Array Radar |SMART-L |Active Electronically Scanned Array |Aegis combat system |AN/SPY-1 |Passive electronically scanned array }}
In acoustics, [[microphone array]]s and [[line array]]s of loudspeakers are also used.
=== Space probe communication ===
=== Optics ===
{{Main|Phased-array optics}}
Within the visible and infrared spectrum of electromagnetic waves it is possible to construct [[phased-array optics|optical phased arrays]] (OPAs) which allow for dynamic beam forming and [[beam steering]] without mechanically moving parts .<ref name=":5" /><ref name=":6">{{Cite journal |lastlast1=Poulton |firstfirst1=Christopher V. |last2=Yaacobi |first2=Ami |last3=Cole |first3=David B. |last4=Byrd |first4=Matthew J. |last5=Raval |first5=Manan |last6=Vermeulen |first6=Diedrik |last7=Watts |first7=Michael R. |date=2017-10-15 |title=Coherent solid-state LIDAR with silicon photonic optical phased arrays |url=https://opg.optica.org/ol/abstract.cfm?uri=ol-42-20-4091 |journal=Optics Letters |language=EN |volume=42 |issue=20 |pages=4091–4094 |doi=10.1364/OL.42.004091 |pmid=29028020 |bibcode=2017OptL...42.4091P |issn=1539-4794|url-access=subscription }}</ref><ref>{{Cite journal |lastlast1=Sun |firstfirst1=Jie |last2=Timurdogan |first2=Erman |last3=Yaacobi |first3=Ami |last4=Hosseini |first4=Ehsan Shah |last5=Watts |first5=Michael R. |date=2013-01-09 |title=Large-scale nanophotonic phased array |url=https://www.nature.com/articles/nature11727 |journal=Nature |language=en |volume=493 |issue=7431 |pages=195–199 |doi=10.1038/nature11727 |pmid=23302859 |bibcode=2013Natur.493..195S |issn=1476-4687|url-access=subscription }}</ref>. They are used in wavelength multiplexers and filters for telecommunication purposes,<ref name=":5">P. D. Trinh, S. Yegnanarayanan, F. Coppinger and B. Jalali [http://www.ee.ucla.edu/~oecs/comp_pub/intr_opt/Optics23.pdf Silicon-on-Insulator (SOI) Phased-Array Wavelength Multi/Demultiplexer with Extremely Low-Polarization Sensitivity] {{webarchive|url=https://web.archive.org/web/20051208105830/http://www.ee.ucla.edu/~oecs/comp_pub/intr_opt/Optics23.pdf |date=2005-12-08 }}, ''IEEE Photonics Technology Letters'', Vol. 9, No. 7, July 1997</ref> as well as in [[Lidar]] ,<ref name=":6" />, [[Free-space optical communication]] ,<ref>{{Cite journalbook |lastlast1=Serati |firstfirst1=S. |last2=Stockley |first2=J. |date=2003 |titlechapter=Phased array of phased arrays for free space optical communications |urldate=http://ieeexplore.ieee.org/document/1235111/2003 |journaltitle=Proc.2003 IEEE Aerospace ConfConference Proceedings (Cat. No.03TH8652) |publisher=IEEE |volume=4 |pages=4_1809–4_1816 |doi=10.1109/AERO.2003.1235111 |isbn=978-0-7803-7651-9}}</ref><ref>{{Cite webjournal | last1=Han | first1=Ronglei | last2=Sun | first2=Jianfeng | last3=Hou | first3=Peipei | last4=Ren | first4=Weijie | last5=Cong | first5=Haisheng | last6=Zhang | first6=Longkun | last7=Li | first7=Chaoyang | last8=Jiang | first8=Yuxin |title=OpticaMulti-dimensional Publishingand Grouplarge-sized optical phased array for space laser communication |url=https://opg.optica.org/oe/viewmedia.cfm?uri=oe-30-4-5026&html=true |access-date=2025-07-05 |websitejournal=opg.optica.orgOptics Express | date=2022 | volume=30 | issue=4 | page=5026 |doi=10.1364/oe.447351 | pmid=35209474 | bibcode=2022OExpr..30.5026H }}</ref>, and holography. OPAs were also shown to enable lensless projectors,<ref name=":0">{{Cite web|url=http://authors.library.caltech.edu/60779/1/06886570.pdf|title=Electronic Two-Dimensional Beam Steering for Integrated Optical Phased Arrays|archive-url=https://web.archive.org/web/20170809130907/http://authors.library.caltech.edu/60779/1/06886570.pdf|archive-date=2017-08-09|url-status=live}}</ref>, lensless cameras,<ref name=":1">{{Cite web |title=An 8x8 Heterodyne Lens-less OPA Camera |url=http://chic.caltech.edu/wp-content/uploads/2017/03/Cleo_2017_2D_OPA_V7.pdf |url-status=live |archive-url=https://web.archive.org/web/20170713050602/http://chic.caltech.edu/wp-content/uploads/2017/03/Cleo_2017_2D_OPA_V7.pdf |archive-date=2017-07-13}}</ref><ref name=":2">{{Cite web |title=A One-Dimensional Heterodyne Lens-Free OPA Camera |url=http://chic.caltech.edu/wp-content/uploads/2016/06/CLEO_SI-2016-STu3G.3.pdf |url-status=live |archive-url=https://web.archive.org/web/20170722055717/http://chic.caltech.edu/wp-content/uploads/2016/06/CLEO_SI-2016-STu3G.3.pdf |archive-date=2017-07-22}}</ref>, and chip-scale [[optical tweezers]].<ref>{{Cite journal |lastlast1=Sneh |firstfirst1=Tal |last2=Corsetti |first2=Sabrina |last3=Notaros |first3=Milica |last4=Kikkeri |first4=Kruthika |last5=Voldman |first5=Joel |last6=Notaros |first6=Jelena |date=2024-10-03 |title=Optical tweezing of microparticles and cells using silicon-photonics-based optical phased arrays |url=https://www.nature.com/articles/s41467-024-52273-x |journal=Nature Communications |language=en |volume=15 |issue=1 |pages=8493 |doi=10.1038/s41467-024-52273-x |issn=2041-1723 |pmc=11450221 |pmid=39362852 |bibcode=2024NatCo..15.8493S }}</ref>.
Due to the short wavelengths OPAs are typically realised in nanofabricated [[photonic integrated circuit]] platforms utilising materials such as [[Silicon on insulator]],<ref name=":5" />, [[Germanium]] on [[Silicon]],<ref>{{Cite journal |lastlast1=Prost |firstfirst1=Mathias |last2=Ling |first2=Yi-Chun |last3=Cakmakyapan |first3=Semih |last4=Zhang |first4=Yu |last5=Zhang |first5=Kaiqi |last6=Hu |first6=Junjie |last7=Zhang |first7=Yichi |last8=Yoo |first8=S. J. Ben |date=2019-12-12 |title=Solid-State MWIR Beam Steering Using Optical Phased Array on Germanium-Silicon Photonic Platform |url=https://ieeexplore.ieee.org/document/8896888/ |journal=IEEE Photonics Journal |volume=11 |issue=6 |pages=1–9 |doi=10.1109/JPHOT.2019.2953222 |bibcode=2019IPhoJ..1153222P |issn=1943-0655|doi-access=free }}</ref> , [[Silicon nitride]]<ref>{{Cite journal |lastlast1=Poulton |firstfirst1=Christopher V. |last2=Byrd |first2=Matthew J. |last3=Raval |first3=Manan |last4=Su |first4=Zhan |last5=Li |first5=Nanxi |last6=Timurdogan |first6=Erman |last7=Coolbaugh |first7=Douglas |last8=Vermeulen |first8=Diedrik |last9=Watts |first9=Michael R. |date=2017-01-01 |title=Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths |url=https://opg.optica.org/ol/abstract.cfm?uri=ol-42-1-21 |journal=Optics Letters |language=EN |volume=42 |issue=1 |pages=21–24 |doi=10.1364/OL.42.000021 |pmid=28059212 |bibcode=2017OptL...42...21P |issn=1539-4794|url-access=subscription }}</ref> or polymers.<ref>{{Cite journal |lastlast1=Kim |firstfirst1=Sung-Moon |last2=Lee |first2=Eun-Su |last3=Chun |first3=Kwon-Wook |last4=Jin |first4=Jinung |last5=Oh |first5=Min-Cheol |date=2021-05-19 |title=Compact solid-state optical phased array beam scanners based on polymeric photonic integrated circuits |url=https://www.nature.com/articles/s41598-021-90120-x |journal=Scientific Reports |language=en |volume=11 |issue=1 |pages=10576 |doi=10.1038/s41598-021-90120-x |issn=2045-2322 |pmc=8134440 |pmid=34012058 |bibcode=2021NatSR..1110576K }}</ref>.
[[Synthetic array heterodyne detection]] is an efficient method for [[multiplexing]] an entire phased array onto a single element [[photodetector]].
|