Content deleted Content added
replace pov templates with how-to template |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 4:
{{How-to|date=April 2025}}}}
{{Use dmy dates|date=July 2018}}
'''Dimensional modeling'''
==Description==
Line 54:
== Benefits of dimensional modeling ==
'''Commonly cited benefits of dimensional modeling include:'''<ref name="kimball2013">{{cite book |last1=Kimball |first1=Ralph |last2=Ross |first2=Margy |title=The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling |edition=3rd |year=2013 |publisher=Wiley |isbn=9781118530801 |page=43 |url=https://ia801609.us.archive.org/14/items/the-data-warehouse-toolkit-kimball/The%20Data%20Warehouse%20Toolkit%20-%20Kimball.pdf}}</ref>
* '''Understandability and simplicity.''' Dimensional models organize data by business processes and shared business terms (dimensions), which makes schemas easier for analysts to navigate than highly normalized designs.<ref name="kimball2013" />
* '''Query performance for analytic workloads.''' Star-schema queries typically join a large fact table to a few small dimensions; many systems implement star-join optimizations, and benchmarks specifically evaluate this workload (e.g., the Star Schema Benchmark).<ref name="kimball2013" /><ref name="ssb2009">{{cite conference |last1=O'Neil |first1=Patrick |last2=O'Neil |first2=Elizabeth |last3=Chen |first3=Xuedong |last4=Revilak |first4=Stephen |title=The Star Schema Benchmark and Augmented Fact Table Indexing |book-title=Performance Evaluation and Benchmarking (TPCTC 2009) |year=2009 |publisher=Springer |doi=10.1007/978-3-642-10424-4_17 |url=https://link.springer.com/chapter/10.1007/978-3-642-10424-4_17|url-access=subscription }}</ref>
* '''Extensibility (resilience to change).''' New facts or dimensions can be added without breaking existing queries so long as the fact-table grain is preserved; this allows incremental evolution of the warehouse.<ref name="kimball2013" />
* '''Integration and consistency across subject areas.''' Reusable '''conformed dimensions''' enable consistent cross-process analysis and reduce duplication in future projects.<ref name="bus">{{cite web |title=Enterprise Data Warehouse Bus Architecture |website=Kimball Group |url=https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/kimball-data-warehouse-bus-architecture/ |access-date=2025-08-15}}</ref><ref name="conformed">{{cite web |title=Conformed Dimensions |website=Kimball Group |url=https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/conformed-dimension/ |access-date=2025-08-15}}</ref>
* '''Support for time-variant analysis.''' Techniques for '''slowly changing dimensions''' record attribute history so that analyses reflect the state of a dimension member at the time of each fact.<ref name="scd">{{cite web |title=Slowly Changing Dimensions |website=Kimball Group |date=2008-08-07 |url=https://www.kimballgroup.com/2008/08/slowly-changing-dimensions/ |access-date=2025-08-15}}</ref>
== Dimensional models, Hadoop, and big data ==
Line 94 ⟶ 101:
<ref name="refname4">{{cite book|author1=Ralph Kimball |author2=Margy Ross |title=The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling|edition=Second |date=April 26, 2002|publisher=Wiley|ISBN=0-471-20024-7}}</ref>
<!-- <ref name="refname5">{{cite book|author1=Ralph Kimball |author2=Margy Ross |author3=Warren Thornthwaite |author4=Joy Mundy |author5=Bob Becker |title=The Data Warehouse Lifecycle Toolkit |edition=Second |date=January 2008|publisher=Wiley|ISBN= 978-0-470-14977-5}}</ref> -->
}}
|