Constant amplitude zero autocorrelation waveform: Difference between revisions

Content deleted Content added
m Reverted edit(s) by 69.42.41.6 identified as test/vandalism using STiki
Citation bot (talk | contribs)
Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 513/1032
 
(12 intermediate revisions by 11 users not shown)
Line 1:
In [[signal processing]], a '''Constant Amplitude Zero AutoCorrelation waveform''' (abbreviated '''CAZAC''') is a periodic [[complex number|complex]]-valued [[signal (electrical engineering)|signal]] with modulus one and out-of-phase periodic (cyclic) [[autocorrelation]]s equal to zero. CAZAC sequences find application in wireless communication systems, for example in [[3GPP Long Term Evolution]] for synchronisationsynchronization of mobile phones with base stations. [[Zadoff–Chu sequence]]s are well -known CAZAC sequences with special properties.
{{technical|date=June 2012}}
{{Refimprove|date=March 2009}}
 
== Example CAZAC Sequence ==
In [[signal processing]], a '''Constant Amplitude Zero AutoCorrelation waveform''' (abbreviated CAZAC) is a periodic [[complex number|complex]]-valued [[signal (electrical engineering)|signal]] with modulus one and out-of-phase periodic (cyclic) [[autocorrelation]] equal to zero. CAZAC sequences find application in wireless communication systems, for example in [[3GPP Long Term Evolution]] for synchronisation of mobile phones with base stations. [[Zadoff–Chu sequence]]s are well known CAZAC sequences with special properties.
 
For a CAZAC sequence of length <math>N</math> where <math>M</math> is relatively prime to <math>N</math> the <math>k</math>th symbol <math>u_k</math> is given by:<ref>{{Cite journal|last=Chu|first=D.|date=July 1972|title=Polyphase codes with good periodic correlation properties (Corresp.)|journal=IEEE Transactions on Information Theory|volume=18|issue=4|pages=531–532|doi=10.1109/TIT.1972.1054840|issn=1557-9654}}</ref>
In wireless [[CDMA]] technology, the given data encoded and in transmitter side number users assign to unique codes with help comman codes ( ex.. PN sequences, [[pseudorandom noise]]) . In CDMA technology data transmitted under same range of frequency but the users are identified by the unique number, the codes are matched between the particular users than data will transmitted.
 
===Even N===
The matching between the users is called synchronous CDMA. The coded data sending with constant amplitude and zero auto correlation . The [[constant envelope | constant amplitude]] means the sending and receiving easily without any correction. Zero auto correlation means the correlative variance between the users is zero, so no interaction or interference between the users.
 
<math>u_k = \exp \left(j \frac{M \pi k^2}{N} \right)</math>
 
===Odd N===
 
<math>u_k = \exp \left(j \frac{M \pi k (k+1)}{N} \right)</math>
 
==Power Spectrum of CAZAC Sequence==
 
The power spectrum of a CAZAC sequence is flat.
 
If we have a CAZAC sequence the time ___domain autocorrelation is an impulse
 
: <math>r(\tau)=\delta(n)</math>
 
The discrete fourier transform of the autocorrelation is flat
 
: <math>R(f) = 1/N</math>
 
Power spectrum is related to autocorrelation by
 
: <math>R(f) = \left| X(f) \right|^2</math>
 
As a result the power spectrum is also flat.
 
: <math>\left| X(f) \right|^2 = 1/N</math>
 
==References==
{{Reflist}}
 
==External links==
* [httphttps://www.math.umd.edu/~jjb/cazac/ CAZAC Sequence Generator (Java applet)]
 
{{DEFAULTSORT:Constant Amplitude Zero Autocorrelation Waveform}}
Line 15 ⟶ 43:
 
 
{{signal-processing-stub}}
{{mathapplied-stub}}