Content deleted Content added
Citation bot (talk | contribs) Add: bibcode, authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 595/1032 |
|||
(26 intermediate revisions by 18 users not shown) | |||
Line 1:
{{Short description|Class of parallel computing applications}}
'''Data-intensive computing''' is a class of [[parallel computing]] applications which use a [[data parallel]] approach to process large volumes of data typically [[terabytes]] or [[petabytes]] in size and typically referred to as [[big data]]. Computing applications
== Introduction ==
The rapid growth of the [[Internet]] and [[World Wide Web]] led to vast amounts of information available online. In addition, business and government organizations create large amounts of both structured and [[unstructured information]], which
[[Parallel computing|Parallel processing]] approaches can be generally classified as either ''compute-intensive'', or ''data-intensive''.<ref>[http://portal.acm.org/citation.cfm?id=280278 Models and languages for parallel computation], by D.B. Skillicorn, and D. Talia, ACM Computing Surveys, Vol. 30, No. 2, 1998, pp. 123-169.</ref><ref name=":0">
Data-intensive is used to describe applications that are I/O bound or with a need to process large volumes of data.<ref>[https://computation.llnl.gov/casc/dcca-pub/dcca/Papers_files/data-intensive-ieee-computer-0408.pdf IEEE: Hardware Technologies for High-Performance Data-Intensive Computing], by M. Gokhale, J. Cohen, A. Yoo, and W.M. Miller, IEEE Computer, Vol. 41, No. 4, 2008, pp. 60-68.</ref> Such applications devote most of their processing time to I/O and movement and manipulation of data. [[Parallel computing|Parallel processing]] of data-intensive applications typically involves partitioning or subdividing the data into multiple segments which can be processed independently using the same executable application program in parallel on an appropriate computing platform, then reassembling the results to produce the completed output data.<ref>[http://www.agoldberg.org/Publications/DesignMethForDP.pdf IEEE: A Design Methodology for Data-Parallel Applications] {{Webarchive|url=https://web.archive.org/web/20110724225852/http://www.agoldberg.org/Publications/DesignMethForDP.pdf |date=2011-07-24 }}, by L.S. Nyland, J.F. Prins, A. Goldberg, and P.H. Mills, IEEE Transactions on Software Engineering, Vol. 26, No. 4, 2000, pp. 293-314.</ref> The greater the aggregate distribution of the data, the more benefit there is in parallel processing of the data. Data-intensive processing requirements normally scale linearly according to the size of the data and are very amenable to straightforward parallelization. The fundamental challenges for data-intensive computing are managing and processing exponentially growing data volumes, significantly reducing associated data analysis cycles to support practical, timely applications, and developing new algorithms which can scale to search and process massive amounts of data. Researchers coined the term BORPS for "billions of records per second" to measure record processing speed in a way analogous to how the term [[Million instructions per second|MIPS]] applies to describe computers' processing speed.<ref>[http://www.cse.fau.edu/~borko/HandbookofCloudComputing.html/ Handbook of Cloud Computing] {{Webarchive|url=https://web.archive.org/web/20101125065304/http://www.cse.fau.edu/~borko/HandbookofCloudComputing.html |date=2010-11-25 }}, "Data-Intensive Technologies for Cloud Computing," by A.M. Middleton. Handbook of Cloud Computing. Springer, 2010, pp. 83-86.</ref>
== Data-parallelism ==
Computer system architectures which can support [[data parallel]] applications were promoted in the early 2000s for large-scale data processing requirements of data-intensive computing.<ref>[http://www.patrickpantel.com/download/papers/2004/kdd-msw04-1.pdf The terascale challenge] by D. Ravichandran, P. Pantel, and E. Hovy. "The terascale challenge," Proceedings of the KDD Workshop on Mining for and from the Semantic Web, 2004</ref> Data-parallelism applied computation independently to each data item of a set of data, which allows the degree of parallelism to be scaled with the volume of data. The most important reason for developing data-parallel applications is the potential for scalable performance, and may result in several orders of magnitude performance improvement. The key issues with developing applications using data-parallelism are the choice of the algorithm, the strategy for data decomposition, [[load balancing (computing)|load balancing]] on processing nodes, [[message passing]] communications between nodes, and the overall accuracy of the results.<ref>[http://www.cs.rochester.edu/u/umit/papers/ppopp01.ps Dynamic adaptation to available resources for parallel computing in an autonomous network of workstations] {{Webarchive|url=https://web.archive.org/web/20110720035435/http://www.cs.rochester.edu/u/umit/papers/ppopp01.ps |date=2011-07-20 }} by U. Rencuzogullari, and [[Sandhya Dwarkadas|S. Dwarkadas]]. "Dynamic adaptation to available resources for parallel computing in an autonomous network of workstations," Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming, 2001</ref> The development of a data parallel application can involve substantial programming complexity to define the problem in the context of available programming tools, and to address limitations of the target architecture. [[Information extraction]] from and indexing of Web documents is typical of data-intensive computing which can derive significant performance benefits from data parallel implementations since Web and other types of document collections can typically then be processed in parallel.<ref>[http://www.mathcs.emory.edu/~eugene/publications.html Information Extraction to Large Document Collections] {{Webarchive|url=https://web.archive.org/web/20110415003825/http://www.mathcs.emory.edu/~eugene/publications.html |date=2011-04-15 }} by E. Agichtein, "Scaling Information Extraction to Large Document Collections," Microsoft Research, 2004</ref>
The US [[National Science Foundation]] (NSF) funded a research program from 2009 through 2010.<ref>{{Cite web |title= Data-intensive Computing |work= Program description |year= 2009 |publisher= NSF |url=
* Approaches to [[parallel programming]] to address the [[Parallel computing|parallel processing]] of data on data-intensive systems
Line 18 ⟶ 19:
* Identifying applications that can exploit this computing paradigm and determining how it should evolve to support emerging data-intensive applications
[[Pacific Northwest National Labs]] defined data-intensive computing as “capturing, managing, analyzing, and understanding data at volumes and rates that push the frontiers of current technologies”.<ref>[
== Approach ==
Data-intensive computing platforms typically use a [[parallel computing]] approach combining multiple processors and disks in large commodity [[Cluster (computing)|computing clusters]] connected using high-speed communications switches and networks which allows the data to be partitioned among the available computing resources and processed independently to achieve performance and scalability based on the amount of data. A cluster can be defined as a type of parallel and [[distributed system]], which consists of a collection of inter-connected stand-alone computers working together as a single integrated computing resource.<ref>
== Characteristics ==
Several common characteristics of data-intensive computing systems distinguish them from other forms of computing:
# The principle of collection of the data and programs or algorithms is used to perform the computation. To achieve high performance in data-intensive computing, it is important to minimize the movement of data.<ref>[http://queue.acm.org/detail.cfm?id=1394131 Distributed Computing Economics] by J. Gray, "Distributed Computing Economics," ACM Queue, Vol. 6, No. 3, 2008, pp. 63-68.</ref> This characteristic allows processing algorithms to execute on the nodes where the data resides reducing system overhead and increasing performance.<ref
# The programming model utilized. Data-intensive computing systems utilize a machine-independent approach in which applications are expressed in terms of high-level operations on data, and the runtime system transparently controls the scheduling, execution, load balancing, communications, and movement of programs and data across the distributed computing cluster.<ref>[
# A focus on reliability and availability. Large-scale systems with hundreds or thousands of processing nodes are inherently more susceptible to hardware failures, communications errors, and software bugs. Data-intensive computing systems are designed to be fault resilient. This typically includes redundant copies of all data files on disk, storage of intermediate processing results on disk, automatic detection of node or processing failures, and selective re-computation of results.
# The inherent scalability of the underlying hardware and [[software architecture]]. Data-intensive computing systems can typically be scaled in a linear fashion to accommodate virtually any amount of data, or to meet time-critical performance requirements by simply adding additional processing nodes. The number of nodes and processing tasks assigned for a specific application can be variable or fixed depending on the hardware, software, communications, and [[distributed file system]] architecture.
Line 32 ⟶ 33:
== System architectures ==
A variety of [[system]] architectures have been implemented for data-intensive computing and large-scale data analysis applications including parallel and distributed [[relational database management systems]] which have been available to run on shared nothing clusters of processing nodes for more than two decades.<ref>[http://www.cse.nd.edu/~dthain/courses/cse40771/spring2010/benchmarks-sigmod09.pdf A Comparison of Approaches to Large-Scale Data Analysis] by A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. Dewitt, S. Madden, and M. Stonebraker. Proceedings of the 35th SIGMOD International conference on Management of Data, 2009.</ref>
However, most data growth is with data in unstructured form and new processing paradigms with more flexible data models were needed. Several solutions have emerged including the [[MapReduce]] architecture pioneered by Google and now available in an open-source implementation called [[Hadoop]] used by [[Yahoo]], [[Facebook]], and others. [[LexisNexis|LexisNexis Risk Solutions]] also developed and implemented a scalable platform for data-intensive computing which is used by [[LexisNexis]].
===MapReduce===
The [[MapReduce]] architecture and programming model pioneered by [[Google]] is an example of a modern [[systems architecture]] designed for data-intensive computing.<ref>[http://labs.google.com/papers/mapreduce-osdi04.pdf MapReduce: Simplified Data Processing on Large Clusters] {{Webarchive|url=https://web.archive.org/web/20091223010101/http://labs.google.com/papers/mapreduce-osdi04.pdf |date=2009-12-23 }} by J. Dean, and S. Ghemawat. Proceedings of the Sixth Symposium on Operating System Design and Implementation (OSDI), 2004.</ref> The MapReduce architecture allows programmers to use a [[functional programming]] style to create a map function that processes a [[
The programming model for [[MapReduce]] architecture is a simple abstraction where the computation takes a set of input
===Hadoop===
[[Apache Hadoop]] is an open source software project sponsored by The [[Apache Software Foundation]] which implements the MapReduce architecture. Hadoop now encompasses multiple subprojects in addition to the base core, MapReduce, and HDFS distributed filesystem. These additional subprojects provide enhanced application processing capabilities to the base Hadoop implementation and currently include Avro, [[Pig_(programming_language)|Pig]], [[HBase]], [[Apache ZooKeeper|ZooKeeper]], [[Apache Hive|Hive]], and Chukwa. The Hadoop MapReduce architecture is functionally similar to the Google implementation except that the base programming language for Hadoop is [[Java (programming language)|Java]] instead of [[C++]]. The implementation is intended to execute on clusters of commodity processors.
Hadoop implements a distributed data processing scheduling and execution environment and framework for MapReduce jobs. Hadoop includes a distributed file system called HDFS which is analogous to [[Google File System|GFS]] in the Google MapReduce implementation. The Hadoop execution environment supports additional distributed data processing capabilities which are designed to run using the Hadoop MapReduce architecture. These include [[HBase]], a distributed column-oriented database which provides random access read/write capabilities; Hive, which is a [[data warehouse]] system built on top of Hadoop that provides [[SQL]]-like query capabilities for data summarization, ad hoc queries, and analysis of large datasets; and Pig – a high-level data-flow programming language and execution framework for data-intensive computing.
[[Pig_(programming_language)|Pig]] was developed at Yahoo! to provide a specific language notation for data analysis applications and to improve programmer productivity and reduce development cycles when using the Hadoop MapReduce environment. Pig programs are automatically translated into sequences of MapReduce programs if needed in the execution environment. Pig provides capabilities in the language for loading, storing, filtering, grouping, de-duplication, ordering, sorting, aggregation, and joining operations on the data.<ref>[http://i.stanford.edu/~usriv/talks/sigmod08-pig-latin.ppt#283,18,User-Code as a First-Class Citizen Pig Latin: A Not-So-Foreign Language for Data Processing] {{Webarchive|url=https://web.archive.org/web/20110720045445/http://i.stanford.edu/~usriv/talks/sigmod08-pig-latin.ppt#283,18,User-Code |date=2011-07-20 }} by C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. (Presentation at SIGMOD 2008)," 2008</ref>
===HPCC===
Line 51 ⟶ 52:
The [[ECL (data-centric programming language)|ECL programming language]] is a high-level, declarative, data-centric, [[Implicit parallelism|implicitly parallel]] language that allows the programmer to define what the data processing result should be and the dataflows and transformations that are necessary to achieve the result. The ECL language includes extensive capabilities for data definition, filtering, data management, and data transformation, and provides an extensive set of built-in functions to operate on records in datasets which can include user-defined transformation functions. ECL programs are compiled into optimized [[C++]] source code, which is subsequently compiled into executable code and distributed to the nodes of a processing cluster.
To address both batch and online aspects data-intensive computing applications, HPCC includes two distinct cluster environments, each of which can be optimized independently for its parallel data processing purpose. The Thor platform is a cluster whose purpose is to be a data refinery for processing
== See also ==
* [[Implicit parallelism]]
* [[Massively parallel]]
Line 64:
{{Reflist|2}}
[[Category:Parallel computing]]
|