Content deleted Content added
improved 'performance |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 629/1032 |
||
(12 intermediate revisions by 7 users not shown) | |||
Line 1:
{{Short description|64-bit computer number format}}
{{lowercase title}}
{{Use dmy dates|date=July 2020|cs1-dates=y}}
{{floating-point}}
In [[computing]], '''decimal64''' is a [[decimal floating point|decimal floating-point]] [[computer number format]] that occupies 8 bytes (64 bits) in computer memory.
Decimal64 supports 'normal' values that can have 16 digit precision from {{gaps|±1.000|000|000|000|000|e=-383}} to {{gaps|±9.999|999|999|999|999|e=384}}, plus 'denormal' values with ramp-down relative precision down to ±1
The binary format of the same
▲Decimal64 supports 'normal' values that can have 16 digit precision from {{gaps|±1.000|000|000|000|000|e=-383}} to {{gaps|±9.999|999|999|999|999|e=384}}, plus 'denormal' values with ramp-down relative precision down to ±1 × 10<sup>−398</sup>, [[signed zero]]s, signed infinities and [[NaN]] (Not a Number).
▲The binary format of the same bit-size supports a range from denormal-min {{gaps|±5|||||e=-324|}}, over normal-min with full 53-bit precision {{gaps|±2.225|073|858|507|201|e=-308|4}} to max {{gaps|±1.797|693|134|862|315|e=+308|7}}.
▲== Representation / encoding of decimal64 values ==
{| class="wikitable"
|-
! Sign !! Combination !! Significand continuation
|-
! 1 bit !! 13 bits !! 50 bits
|-
| {{mono|s}} || {{mono|mmmmmmmmmmmmm}} ||
|}
IEEE 754 allows two alternative encodings for decimal64 values. The standard does not specify how to signify which representation is used, for instance in a situation where decimal64 values are communicated between systems:
* In the [[#Binary integer significand field|binary encoding]], the 16-digit significand is represented as a binary coded positive integer, based on [[binary integer decimal]] (BID).
* In the [[#Densely packed decimal significand field|decimal encoding]], the 16-digit significand is represented as a decimal coded positive integer, based on [[densely packed decimal]] (DPD) with 5 groups of 3 digits (except the most significant digit encoded specially) are each represented in declets (10-bit sequences). This is pretty efficient, because 2<sup>10</sup> = 1024, is only little more than needed to still contain all numbers from 0 to 999.
Both alternatives provide exactly the same set of representable numbers: 16 digits of significand and {{math|size=100%|1=3 × 2<sup>8</sup> = 768}} possible decimal exponent values. (All the possible decimal exponent values storable in a [[binary64]] number are representable in decimal64, and most bits of the significand of a binary64 are stored keeping roughly the same number of decimal digits in the significand.)
▲- The significands are not 'normalized' (the leading digit(s) are allowed to be "0"), and thus most values with less than 7 [[significant digits]] have multiple possible representations; 1000000 × 10<sup>-2</sup>=100000 × 10<sup>-1</sup>=10000 × 10<sup>0</sup>=1000 × 10<sup>1</sup> all have the value 10000. These sets of representations for a same value are called [[Cohort (floating point)|cohorts]]'','' the different members can be used to denote how many digits of the value are known precisely.
In both cases, the most significant 4 bits of the significand (which actually only have 10 possible values) are combined with two bits of the exponent (3 possible values) to use 30 of the 32 possible values of a 5-bit field. The remaining combinations encode [[infinity|infinities]] and [[NaN]]s. BID and DPD use different bits of the combination field for that.
In the cases of Infinity and NaN, all other bits of the encoding are ignored. Thus, it is possible to initialize an array to Infinities or NaNs by filling it with a single byte value.▼
=== Binary integer significand field ===
This format uses a binary significand from 0 to {{math|size=100%|1=10<sup>16</sup> − 1 = {{gaps|9|999|999|999|999|999}} = 2386F26FC0FFFF<sub>16</sub> = {{gaps|1000|1110000110|1111001001|1011111100|0000111111|1111111111<sub>2</sub>}}.}}The encoding, completely stored on 64 bits, can represent binary significands up to {{math|size=100%|1=10 × 2<sup>50</sup> − 1 = {{gaps|11|258|999|068|426|239}} = 27FFFFFFFFFFFF<sub>16</sub>,}} but values larger than {{math|size=100%|1=10<sup>16</sup> − 1}} are illegal (and the standard requires implementations to treat them as 0, if encountered on input).
Line 56 ⟶ 44:
If the {{val|2|u=bits}} after the sign bit are "11", then the 10-bit exponent field is shifted {{val|2|u=bits}} to the right (after both the sign bit and the "11" bits thereafter), and the represented significand is in the remaining {{val|51|u=bits}}. In this case there is an implicit (that is, not stored) leading 3-bit sequence "100" for the MSB bits of the true significand (in the remaining lower bits ''ttt...ttt'' of the significand, not all possible values are used).
{| class="wikitable" style="text-align:left; border-width:0;"
Line 67 ⟶ 53:
! rowspan="2" |Significand / Description
|-
! g12 !! g11 !! g10 !! g9 !! g8 !! g7 !! g6 !! g5 !! g4 !! g3 !! g2
!g1
!g0
|-
| colspan="16" |combination field not! starting with '11', bits ab = 00, 01 or 10
|-
| style="font-family:monospace; background:#cedff2;" | '''a''' || style="font-family:monospace; background:#cedff2;" | '''b''' || style="font-family:monospace; background:#cedff2;" | '''c''' || style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cef2e0;" |'''f''' || style="font-family:monospace; background:#cef2e0;" |'''g'''
| || style="font-family:monospace; background:#cedff2;" | '''abcdmmmmmm''' || style="background:#cef2e0;" |
Finite number with
|-
| colspan="16" |combination field starting with '11', but not 1111, bits ab = 11, bits cd = 00, 01 or 10
|-
| 1 || 1 || style="font-family:monospace; background:#cedff2;" | '''c'''|| style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''f''' || style="font-family:monospace; background:#cef2e0;" | '''g'''
| || style="font-family:monospace; background:#cedff2;" | '''cdmmmmmmef''' || style="background:#cef2e0;" |
Finite number with
|-
| colspan="16" |combination field starting with '1111', bits abcd = 1111
Line 103 ⟶ 89:
|signaling NaN (with payload in significand)
|}
{{gaps|(100)0|1110000110|1111001001|1011111100|0000111111|1111111111}}<sub>2</sub> (with the 3 most significant bits (100) not stored but implicit as shown above; and the next bit is always zero in valid encodings).
In the above cases, the value represented is
Line 111 ⟶ 96:
: {{math|1=(−1)<sup>sign</sup> × 10<sup>exponent−398</sup> × significand}} <!-- Remember, significand is defined as an integer: 0 <= significand < 10^16 -->
If the four bits after the sign bit are "1111" then the value is an infinity or a NaN, as described above:
0 11110 xx...x +infinity
1 11110 xx...x -infinity
x 11111 0x...x a quiet NaN
x 11111 1x...x a signalling NaN
=== Densely packed decimal significand field ===
In this version, the significand is stored as a series of decimal digits. The leading digit is between 0 and 9 (3 or 4 binary bits), and the rest of the significand uses the [[densely packed decimal]] (DPD) encoding.
Line 122 ⟶ 114:
If the first two bits after the sign bit are "00", "01", or "10", then those are the leading bits of the exponent, and the three bits "cde" after that are interpreted as the leading decimal digit (0 to 7):
If the first two bits after the sign bit are "11", then the second 2-bits are the leading bits of the exponent, and the next bit "e" is prefixed with implicit bits "100" to form the leading decimal digit
The remaining two combinations (11 110 and 11 111) of the 5-bit field after the sign bit are used to represent ±infinity and NaNs, respectively.
Line 134 ⟶ 126:
! rowspan="2" |Significand / Description
|-
! g12 !! g11 !! g10 !! g9 !! g8 !! g7 !! g6 !! g5 !! g4 !! g3 !! g2
!g1
!g0
|-
| colspan="16" |combination field not! starting with '11', bits ab = 00, 01 or 10
|-
| style="font-family:monospace; background:#cedff2;" | '''a''' || style="font-family:monospace; background:#cedff2;" | '''b''' || style="font-family:monospace; background:#cef2e0;" | '''c''' || style="font-family:monospace; background:#cef2e0;" | '''d''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m'''
| || style="font-family:monospace; background:#cedff2;" | '''abmmmmmmmm'''|| style="background:#cef2e0;" |
Finite number with small first digit of significand (0 … 7).
|-
| colspan="16" |combination field starting with '11', but not 1111, bits ab = 11, bits cd = 00, 01 or 10
|-
| 1 || 1 || style="font-family:monospace; background:#cedff2;" | '''c''' || style="font-family:monospace; background:#cedff2;" | '''d''' || style="font-family:monospace; background:#cef2e0;" | '''e''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m''' || style="font-family:monospace; background:#cedff2;" | '''m'''
| || style="font-family:monospace; background:#cedff2;" | '''cdmmmmmmmm'''|| style="background:#cef2e0;" |
Finite number with big first digit of significand (8 or 9).
|-
Line 171 ⟶ 163:
|}
The DPD/3BCD transcoding for the declets is given by the following table. b9...b0 are the bits of the DPD, and d2...d0 are the three BCD digits.
{{Densely packed decimal}}
Line 179 ⟶ 169:
The 8 decimal values whose digits are all 8s or 9s have four codings each.
The bits marked x in the table above are [[don't care|ignored]] on input, but will always be 0 in computed results.
(The {{math|size=100%|1=8 × 3 = 24}} non-standard encodings fill in the
In the above cases, with the ''true significand'' as the sequence of decimal digits decoded, the value represented is
:<math>(-1)^\text{signbit}\times 10^{\text{exponentbits}_2-398_{10}}\times \text{truesignificand}_{10}</math>
▲== History ==
▲decimal64 was formally introduced in the [[IEEE 754-2008 revision|2008 revision]]<ref name="IEEE-754_2008">{{cite book |author=IEEE Computer Society |url=https://ieeexplore.ieee.org/document/4610935 |title=IEEE Standard for Floating-Point Arithmetic |date=2008-08-29 |publisher=[[IEEE]] |isbn=978-0-7381-5753-5 |doi=10.1109/IEEESTD.2008.4610935 |id=IEEE Std 754-2008 |ref=CITEREFIEEE_7542008 |access-date=2016-02-08}}</ref> of the [[IEEE 754]] standard, which was taken over into the ISO/IEC/IEEE 60559:2011<ref name="ISO-60559_2011">{{Cite book |last=ISO/IEC JTC 1/SC 25 |url=https://www.iso.org/standard/57469.html |title=ISO/IEC/IEEE 60559:2011 — Information technology — Microprocessor Systems — Floating-Point arithmetic |date=June 2011 |publisher=ISO |pages=1–58}}</ref> standard.
▲In the cases of Infinity and NaN, all other bits of the encoding are ignored. Thus, it is possible to initialize an array to Infinities or NaNs by filling it with a single byte value.
== See also ==
* [[ISO/IEC 10967]], Language Independent Arithmetic
* [[Primitive data type]]
* [[
== References ==
|