Content deleted Content added
m Requested visit by template {{Pixie me}}. ISBNs (Build KF) |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(15 intermediate revisions by 9 users not shown) | |||
Line 1:
In [[optimization (mathematics)|optimization theory]], '''semi-infinite programming''' ('''SIP''') is an [[optimization problem]] with a finite number of variables and an infinite number of constraints, or an infinite number of variables and a finite number of constraints. In the former case the constraints are typically parameterized.<ref>
{{harvnb|Bonnans|Shapiro|2000|pp=496–526, 581}}
{{harvnb|Goberna|López|1998}}
{{harvnb|Hettich|Kortanek|1993|pp=380–429}}
* {{cite article|last1=Hettich|first1=R.|last2=Kortanek|first2=K. O.|title=Semi-infinite programming: Theory, methods, and applications|jstor=2132425|journal=SIAM Review|volume=35|year=1993|number=3|pages=380–429|doi=10.1137/1035089|mr=1234637 | jstor = 2132425}}▼
</ref>
Line 9:
:<math> \min_{x \in X}\;\; f(x) </math>
:<math> \text{subject to: }
::<math> g(x,y) \le 0, \;\; \forall y \in Y </math>
Line 19:
:<math>Y \subseteq R^m.</math>
SIP can be seen as a special case of
==Methods for solving the problem==
{{Empty section|date=July 2010}}
In the meantime, see external links below for a complete tutorial.
==Examples==
{{Empty section|date=July 2010}}
In the meantime, see external links below for a complete tutorial.
==See also==
Line 32 ⟶ 36:
==References==
{{reflist}}
{{refbegin}}
*{{cite book |first1=Edward J. |last1=Anderson
*
*{{cite book |first1=M.
*{{cite book |first1=M.A. |last1=Goberna |first2=M.A. |last2=López |title=Post-Optimal Analysis in Linear Semi-Infinite Optimization |doi=10.1007/978-1-4899-8044-1 |url=https://link.springer.com/book/10.1007/978-1-4899-8044-1 |isbn=978-1-4899-8044-1 |series=SpringerBriefs in Optimization |publisher=Springer |date=2014 }}
▲* {{cite
*{{cite book |first=David G. |last=Luenberger
*{{cite book |editor-first=Rembert |editor-last=Reemtsen and |editor2-first=Jan-J. |editor2-last=Rückmann |title=Semi-Infinite Programming |publisher=Springer |date=1998 |isbn=978-1-4757-2868-2 |doi=10.1007/978-1-4757-2868-2 |url=https://link.springer.com/book/10.1007/978-1-4757-2868-2 |series=Nonconvex Optimization and Its Applications |volume=25 }}
*{{cite journal |first1=F. |last1=Guerra Vázquez |first2=J.-J. |last2=Rückmann |first3=O. |last3=Stein |first4=G. |last4=Still |title=Generalized semi-infinite programming: A tutorial |journal=Journal of Computational and Applied Mathematics |volume=217 |issue=2 |pages=394–419 |date=1 August 2008 |doi=10.1016/j.cam.2007.02.012 |bibcode=2008JCoAM.217..394G |url=http://www.sciencedirect.com/science/article/pii/S0377042707000982 |url-access=subscription }}
{{refend}}
==External links==
* [
[[Category:Optimization in vector spaces]]
[[Category:Approximation theory]]
[[Category:Numerical analysis]]
{{Mathapplied-stub}}
|