Content deleted Content added
Changed variable name to be consistent with other examples and explanation |
m Undid revision 1307761388 by 74.213.81.193 (talk) ?? |
||
(19 intermediate revisions by 15 users not shown) | |||
Line 2:
{{use dmy dates|date=July 2022 |cs1-dates=sy }}
{{Trigonometry}}
{{redirect|Arctangent
In [[mathematics]], the '''inverse trigonometric functions''' (occasionally also called ''antitrigonometric'',<ref name="Hall_1909"/> ''cyclometric'',{{r|cyclometric}} or ''arcus'' functions{{r|arcus}}) are the [[inverse function]]s of the [[trigonometric functions]], under suitably restricted [[Domain of a function|domains]]. Specifically, they are the inverses of the [[sine]], [[cosine]], [[tangent (trigonometry)|tangent]], [[cotangent]], [[secant (trigonometry)|secant]], and [[cosecant]] functions,<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Inverse Trigonometric Functions|url=https://mathworld.wolfram.com/InverseTrigonometricFunctions.html|access-date=2020-08-29|website=mathworld.wolfram.com|language=en}}</ref> and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in [[engineering]], [[navigation]], [[physics]], and [[geometry]].
Line 29 ⟶ 30:
{| class="wikitable" style="text-align:center"
|-
! scope="col" | Name
! scope="col" | Usual notation
! scope="col" | Definition
! scope="col" | Domain of
! scope="col" | Range of usual principal value <br/>
! scope="col" | Range of usual principal value <br/>
|-
! scope="row" | arcsine
| {{math|1= ''y'' = arcsin(''x'')}} || {{math|1=''x'' = [[sine|sin]](''y'')}} || {{math|−1 ≤ ''x'' ≤ 1}} || {{math|−{{sfrac|π|2}} ≤ ''y'' ≤ {{sfrac|π|2}}}} || {{math|−90° ≤ ''y'' ≤ 90°}}
|-
! scope="row" | arccosine
| {{math|1= ''
|-
! scope="row" | arctangent
| {{math|1= ''y'
|-
! scope="row" | arccotangent
| {{math|1= ''
|-
! scope="row" | arcsecant
| {{math|1= ''y'' = arcsec(''x'')}} || {{math|1=''x'' = [[Secant (trigonometry)|sec]](''y'')}} || {{math|{{abs|''x''}} ≥ 1}} || {{math|0 ≤ ''y'' < {{sfrac|π|2}}}} or {{math|{{sfrac|π|2}} < ''y'' ≤ π}} || {{math|0° ≤ ''y'' < 90°}} or {{math|90° < ''y'' ≤ 180°}}
|-
! scope="row" | arccosecant
| {{math|1= ''y'' = arccsc(''x'')}} ||{{math|1=''x'' = [[cosecant|csc]](''y'')}} || {{math|{{abs|''x''}} ≥ 1}} || {{math|−{{sfrac|π|2}} ≤ ''y'' < 0}} or {{math|0 < ''y'' ≤ {{sfrac|π|2}}}} || {{math|−90° ≤ ''y'' < 0}} or {{math|0° < ''y'' ≤ 90°}}
|-
|}
Note: Some authors
====Domains====
If
{{DomainsImagesAndPrototypesOfTrigAndInverseTrigFunctions
Line 675 ⟶ 681:
[[File:Riemann surface for Arg of ArcTan of x.svg|thumb|A [[Riemann surface]] for the argument of the relation {{math|1=tan ''z'' = ''x''}}. The orange sheet in the middle is the principal sheet representing {{math|arctan ''x''}}. The blue sheet above and green sheet below are displaced by {{math|2''π''}} and {{math|−2''π''}} respectively.]]
Since the inverse trigonometric functions are [[analytic function]]s, they can be extended from the [[Number line|real line]] to the complex plane. This results in functions with multiple sheets and [[branch point]]s. One possible way of defining the extension is:
:<math>\arctan(z) = \int_0^z \frac{dx}{1 + x^2} \quad z \neq -i, +i </math>
where the part of the imaginary axis which does not lie strictly between the branch points (−i and +i) is the [[branch cut]] between the principal sheet and other sheets. The path of the integral must not cross a branch cut. For ''z'' not on a branch cut, a straight line path from 0 to ''z'' is such a path. For ''z'' on a branch cut, the path must approach from {{nowrap|Re[x] > 0}} for the upper branch cut and from {{nowrap|Re[x] < 0}} for the lower branch cut.
Line 712 ⟶ 718:
:<math>ce^{i\theta} = a + ib</math>
where <math>a</math> is the adjacent side, <math>b</math> is the opposite side, and <math>c</math> is the [[hypotenuse]]. From here, we can solve for <math>\theta</math>.
:<math>\begin{align}
Line 806 ⟶ 812:
{{anchor|Two-argument variant of arctangent}}
{{main|atan2}}
The two-argument [[atan2|{{math|atan2}}]] function computes the arctangent of {{math|''y''
In terms of the standard '''arctan''' function, that is with range of
\arctan\left(\frac y x\right) & \quad x > 0 \\
\arctan\left(\frac y x\right) + \pi & \quad y \ge 0,\; x < 0 \\
Line 819 ⟶ 825:
\end{cases}</math>
It also equals the [[principal value]] of the [[arg (mathematics)|arg]]ument of the [[complex number]] {{math|''x''
This limited version of the function above may also be defined using the [[tangent half-angle formula]]e as follows:
provided that either {{math|''x''
The above argument order (
====Arctangent function with ___location parameter====
In many applications<ref>when a time varying angle crossing <math>\pm\pi/2</math> should be mapped by a smooth line instead of a saw toothed one (robotics,
:<math>
y = \arctan_\eta(x) := \arctan(x) + \pi \, \operatorname{rni}\left(\frac{\eta - \arctan(x)}{\pi} \right)\, .
Line 861 ⟶ 867:
<ref name="Hall_1909">{{cite book|title=Trigonometry|volume=Part I: Plane Trigonometry|author1-first=Arthur Graham|author1-last=Hall|author2-first=Fred Goodrich|author2-last=Frink|date=January 1909|___location=Ann Arbor, Michigan, USA|chapter=Chapter II. The Acute Angle [14] Inverse trigonometric functions|publisher=[[Henry Holt and Company]] / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA|publication-place=New York, USA|page=15|chapter-url = https://archive.org/stream/planetrigonometr00hallrich#page/n30/mode/1up|access-date=2017-08-12|quote=[…] {{mono|1=α = arcsin ''m''}}: It is frequently read "[[arc-sine]] ''m''" or "[[anti-sine]] ''m''," since two mutually inverse functions are said each to be the [[anti-function]] of the other. […] A similar symbolic relation holds for the other [[trigonometric function]]s. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol, {{mono|1=α = sin{{sup|-1}}''m''}}, is still found in English and American texts. The notation {{mono|1=α = inv sin ''m''}} is perhaps better still on account of its general applicability. […]}}</ref>
<ref name=cyclometric>{{cite book|title=Elementarmathematik vom höheren Standpunkt aus: Arithmetik, Algebra, Analysis|volume=1|author-first=Felix|author-last=Klein|author-link=Felix Klein|date=1924<!-- 1927 -->|orig-year=1902<!-- 1908 -->|edition=3rd|publisher=J. Springer|___location=Berlin|language=de}} Translated as {{cite book|title=Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis |author-first=Felix |author-last=Klein |author-link=Felix Klein |display-authors=0 |year=1932 |publisher=Macmillan |isbn=978-0-486-43480-3 |translator-first1=E. R. |translator-last1=Hedrick |translator-first2=C. A. |translator-last2=Noble |url=https://books.google.com/books?id=8KuoxgykfbkC }}</ref>
<ref name="arcus">{{cite book|title=Encyclopaedia of Mathematics|title-link=Encyclopedia of Mathematics|author-first=Michiel|author-last=Hazewinkel|author-link=Michiel Hazewinkel|publisher=[[Kluwer Academic Publishers]] / [[Springer Science & Business Media]]|orig-year=1987|date=1994|edition=unabridged reprint|isbn=978-155608010-4}} {{pb}} {{cite book |last1=Bronshtein |first1=I. N. |last2=Semendyayev |first2=K. A. |last3=Musiol |first3=Gerhard |last4=Mühlig |first4=Heiner |title=Handbook of Mathematics |edition=6th |publisher=Springer |___location=Berlin |doi=10.1007/978-3-663-46221-8 |chapter=Cyclometric or Inverse Trigonometric Functions |doi-broken-date=1
<ref name="Americana_1912">{{cite book|chapter=Inverse trigonometric functions|title=The Americana: a universal reference library|volume=21|editor-first1=Frederick Converse|editor-last1=Beach|editor-first2=George Edwin|editor-last2=Rines|date=1912|title-link=The Americana}}</ref>
<ref name="Cajori">{{cite book|url = https://archive.org/details/ahistorymathema02cajogoog|author-last=Cajori|author-first=Florian|author-link=Florian Cajori|title=A History of Mathematics|page=[https://archive.org/details/ahistorymathema02cajogoog/page/n284 272]|edition=2|year=1919|publisher=[[The Macmillan Company]]|___location=New York, NY}}</ref>
|