Content deleted Content added
Partial restore with corrected model |
|||
(31 intermediate revisions by 18 users not shown) | |||
Line 5:
'''Floating point operations per second''' ('''FLOPS''', '''flops''' or '''flop/s''') is a measure of [[computer performance]] in [[computing]], useful in fields of scientific computations that require [[floating-point]] calculations.<ref>{{cite web |title=Understand measures of supercomputer performance and storage system capacity |url=https://kb.iu.edu/d/apeq |website=kb.iu.edu |access-date=23 March 2024}}</ref>
For such cases, it is a more accurate measure than
==Floating-point arithmetic==
{{Anchor|multipliers}}
{| class="wikitable floatright sortable"
|+ Multipliers for flops
Line 23 ⟶ 24:
|-
| [[Giga-|giga]]FLOPS
| GFLOPS<ref>{{cite web | title = GPU GFLOPS Statistics 2007-2025: NVIDIA AMD Intel | url = https://gpus.axiomgaming.net/gflops-statistics | website = Axiom Gaming | publisher = Axiom Gaming | access-date = 14 August 2025}}</ref>
| 10<sup>9</sup>
|-
Line 72 ⟶ 73:
: <math>\text{FLOPS} = \text{cores} \times \frac{\text{cycles}}{ \text{second}} \times \frac{\text{FLOPs}}{\text{cycle}}.</math>
FLOPS can be recorded in different measures of precision, for example, the [[TOP500]] supercomputer list ranks computers by 64
{{anchor|FLOPSforProcessors}}
Line 90 ⟶ 91:
|-
|[[Intel 80486]]
|[[x87]] (
| {{dunno}}
|0.128<ref name=":1" />
Line 99 ⟶ 100:
*Intel [[P6 (microarchitecture)|P6]] [[Pentium Pro]]
}}
|[[x87]] (
| {{dunno}}
|0.5<ref name=":1">{{Cite web|title=home.iae.nl |url=http://home.iae.nl/users/mhx/flops_4.tbl|access-date=|website=}}</ref>
Line 108 ⟶ 109:
*Intel [[P6 (microarchitecture)|P6]] [[Pentium II]]
}}
|[[
| {{dunno}}
|1<ref name=":0">{{Cite web|title=Computing Power throughout History|url=https://www.alternatewars.com/BBOW/Computing/Computing_Power.htm|access-date=2021-02-13|website=alternatewars.com}}</ref>
Line 157 ⟶ 158:
| 8 || 16 || 0
|-
|{{
}}
|[[Advanced Vector Extensions|AVX2]] & [[FMA instruction set|FMA]] (256-bit)
Line 172 ⟶ 173:
* Intel [[Ice Lake (microprocessor)|Ice Lake]], [[Tiger Lake (microprocessor)|Tiger Lake]] and [[Rocket Lake]]
}}
| [[Advanced Vector Extensions|AVX-512]] & [[FMA instruction set|FMA]] (512-bit)
| 32 || 64 || 0 |-
! colspan="5" |AMD CPU
Line 181 ⟶ 183:
*AMD [[Jaguar (microarchitecture)|Jaguar]]
*AMD [[Puma (microarchitecture)|Puma]]
}}
|[[Advanced Vector Extensions|AVX]] (128-bit)
|-
|AMD [[AMD 10h|K10]]
|[[SSE4|SSE4/4a]] (128-bit) || 4 || 8 || 0
|-
| AMD [[Bulldozer (microarchitecture)|Bulldozer]]<ref name="tpeak_jos" />
|{{
▲*[[FMA instruction set|FMA3/4]] (Piledriver, Excavator)
}}
| 4 || 8 || 0
|-
|{{
}}
| [[Advanced Vector Extensions|AVX2]] & [[FMA instruction set|FMA]]
| 8 || 16 || 0
|-
|{{
}}
| [[Advanced Vector Extensions|AVX2]] & [[FMA instruction set|FMA]] (256-bit)
| 16 || 32 || 0
|-
|-
|{{ublist|
|AMD [[Zen 4]]<br/>(Ryzen 7000 series, Threadripper 7000 series, Epyc [[Epyc|Genoa]],[[Epyc|Bergamo]], [[Epyc|Siena]])
}}
| [[Advanced Vector Extensions|AVX-512]] & [[FMA instruction set|FMA]] (256-bit)
| 16 || 32 || 0
|-
|{{ublist|
|AMD [[Zen 5]]<ref>{{Cite web | url=https://community.amd.com/t5/server-processors/leadership-hpc-performance-with-5th-generation-amd-epyc/ba-p/739498 | title=Leadership HPC Performance with 5th Generation AMD EPYC Processors}}</ref><br/>(Ryzen 9000 series, Threadripper 9000 series, Epyc [[Epyc|Turin]])
}}
| [[Advanced Vector Extensions|AVX-512]] & [[FMA instruction set|FMA]] (512-bit)
| 32 || 64 || 0
|-
! colspan="5" |ARM CPU
Line 257 ⟶ 272:
|[[Parallel Thread Execution|PTX]] || {{dunno}} || 2 || {{dunno}}
|-
| Nvidia [[Fermi (microarchitecture)|Fermi]]
(only GeForce GTX 465–480, 560 Ti, 570–590) | [[Parallel Thread Execution|PTX]] | {{1/4}}<br/>(locked by driver,<br/>1 in hardware) || 2 || 0
|-
| Nvidia [[Fermi (microarchitecture)|Fermi]]
(only Quadro 600–2000) | [[Parallel Thread Execution|PTX]] | {{frac|1|8}} || 2 || 0
|-
| Nvidia [[Fermi (microarchitecture)|Fermi]]
(only Quadro 4000–7000, Tesla) | [[Parallel Thread Execution|PTX]] | 1 || 2 || 0
|-
| Nvidia [[Kepler (microarchitecture)|Kepler]]
(GeForce (except Titan and Titan Black), Quadro (except K6000), Tesla K10) | [[Parallel Thread Execution|PTX]] | {{frac|1|12}}<br/>(for [[GeForce 700 series|GK110]]:<br/>locked by driver,<br/>{{2/3}} in hardware) || 2 || 0
|-
| Nvidia [[Kepler (microarchitecture)|Kepler]]
(GeForce GTX Titan and Titan Black, Quadro K6000, Tesla (except K10)) | [[Parallel Thread Execution|PTX]] | {{2/3}} || 2 || 0
|-
|{{
}}
| [[Parallel Thread Execution|PTX]] || {{frac|1|16}} || 2 || {{frac|1|32}}
Line 296 ⟶ 321:
* Nvidia [[Ada Lovelace (microarchitecture)|Ada Lovelace]]
}}
| [[Parallel Thread Execution|PTX]] || {{frac|1|32}} || {{nowrap|2 (FP32) + 0 (INT32)}}<br/>''or''<br/>{{nowrap|1 (FP32) + 1 (INT32)}} || 8
|-
| Nvidia [[Hopper (microarchitecture)|Hopper]] || [[Parallel Thread Execution|PTX]] || 2 || 2 (FP32) + 1 (INT32) || 32
|-
! colspan="5" |AMD GPU
Line 309 ⟶ 336:
|[[TeraScale (microarchitecture)#TeraScale 3|TeraScale 3]] || 1 || 4 || {{dunno}}
|-
| AMD [[Graphics Core Next|GCN]]
| [[Graphics Core Next|GCN]] || 1 || 2 || {{dunno}} |-
| AMD [[Graphics Core Next|GCN]]
| [[Graphics Core Next|GCN]] || {{frac|1|8}} || 2 || 4 |-
| AMD [[AMD RX Vega series|GCN Vega 10]] || [[Graphics Core Next|GCN]] || {{frac|1|8}} || 2 || 4
|-
| AMD [[AMD RX Vega series|GCN Vega 20]]
| {{1/2}}<br/>(locked by driver,<br/>1 in hardware) || 2 || 4
|-
| AMD [[AMD RX Vega series|GCN Vega 20]]
| [[Graphics Core Next|GCN]] | 1 || 2 || 4
|-
Line 372 ⟶ 402:
|[[ENIAC]] @ 100 kHz in 1945
|
|0.
|
|
Line 416 ⟶ 446:
|[[Parallella]] E16 @ 1000 MHz in 2012
|
|2<ref name="Epiphany multi-core coprocessor E16G301 specs">[http://www.adapteva.com/products/silicon-devices/e16g301/ Epiphany-III 16-core 65nm Microprocessor (E16G301)] // [http://www.adapteva.com/author/admin/ admin] (August 19, 2012)</ref>
|
|
Line 422 ⟶ 452:
|[[Parallella]] E64 @ 800 MHz in 2012
|
|2<ref name="Epiphany multi-core coprocessor E64G401 specs">[http://www.adapteva.com/products/silicon-devices/e64g401/ Epiphany-IV 64-core 28nm Microprocessor (E64G401)] // [http://www.adapteva.com/author/admin/ admin] (August 19, 2012)</ref>
|
|
Line 435 ⟶ 465:
==Performance records==
===Single computer records===
The [[NEC SX-2]], a [[supercomputer]] developed by [[NEC]] in 1983, achieved gigaFLOPS (GFLOPS) performance with 1.3 [[billion]] FLOPS.<ref>{{Cite web |title=【NEC】 SX-1, SX-2 |url=https://museum.ipsj.or.jp/en/computer/super/0008.html |access-date=2025-08-25 |website=IPSJ Computer Museum |publisher=[[Information Processing Society of Japan]]}}</ref>
In June 1997, [[Intel]]'s [[ASCI Red]] was the world's first computer to achieve one teraFLOPS and beyond. Sandia director Bill Camp said that ASCI Red had the best reliability of any supercomputer ever built, and "was supercomputing's high-water mark in longevity, price, and performance".<ref name="jacobsequity.com">{{cite web |title=Sandia's ASCI Red, world's first teraflop supercomputer, is decommissioned |url=http://www.jacobsequity.com/ASCI%20Red%20Supercomputer.pdf |access-date=November 17, 2011 |archive-url=https://web.archive.org/web/20101105131112/http://www.jacobsequity.com/ASCI%20Red%20Supercomputer.pdf |archive-date=November 5, 2010 }}</ref>
Line 449 ⟶ 481:
On October 25, 2007, [[NEC]] Corporation of Japan issued a press release announcing its SX series model [[SX-9]],<ref>{{cite news|url=http://www.nec.co.jp/press/en/0710/2501.html|title=NEC Launches World's Fastest Vector Supercomputer, SX-9|date=October 25, 2007|publisher=NEC|access-date=July 8, 2008}}</ref> claiming it to be the world's fastest vector supercomputer. The [[SX-9]] features the first CPU capable of a peak vector performance of 102.4 gigaFLOPS per single core.
On February 4, 2008, the [[National Science Foundation|NSF]] and the [[University of Texas at Austin]] opened full scale research runs on an [[AMD]], [[Sun Microsystems|Sun]] supercomputer named
|url = http://www.tacc.utexas.edu/resources/hpcsystems/
|title = University of Texas at Austin, Texas Advanced Computing Center
Line 470 ⟶ 502:
In October 2010, China unveiled the [[Tianhe-1]], a supercomputer that operates at a peak computing rate of 2.5 petaFLOPS.<ref>{{cite news| url=https://www.bbc.co.uk/news/technology-11644252 | publisher=BBC News | title=China claims supercomputer crown | date=October 28, 2010}}</ref><ref>{{cite web|last=Dillow |first=Clay |url=http://www.popsci.com/technology/article/2010-10/china-unveils-2507-petaflop-supercomputer-worlds-fastest |title=China Unveils 2507 Petaflop Supercomputer, the World's Fastest |website=Popsci.com |date=October 28, 2010 |access-date=February 9, 2012 }}</ref>
{{As of|2010}} the fastest PC [[microprocessor|processor]] reached 109 gigaFLOPS (
In November 2011, it was announced that Japan had achieved 10.51 petaFLOPS with its [[K computer]].<ref name="Petaflops">{{cite web|url=http://www.fujitsu.com/global/news/pr/archives/month/2011/20111102-02.html |title='K computer' Achieves Goal of 10 Petaflops |publisher=Fujitsu.com |access-date=February 9, 2012}}</ref> It has 88,128 [[SPARC64 VIIIfx]] [[central processing unit|processor]]s in 864 racks, with theoretical performance of 11.28 petaFLOPS. It is named after the Japanese word "[[wikt:京#Japanese|kei]]", which stands for 10 [[1,000,000,000,000,000|quadrillion]],<ref>See [[Japanese numerals#Large numbers|Japanese numbers]]</ref> corresponding to the target speed of 10 petaFLOPS.
Line 528 ⟶ 560:
|${{Inflation|US|1.265|1945|r=3|fmt=c}}T
|[[ENIAC]]: {{US$|long=no|487000}} in 1945 and ${{Inflation|US|487000|1945|fmt=c|r=-3}} in 2023.
|{{US$|long=no|487000}} / {{val|0.000000385|ul=GFLOPS}}. [[Vacuum-tube computer|First-generation]] ([[vacuum tube]]-based) electronic digital computer.
|-
| 1961
Line 534 ⟶ 566:
| ${{Inflation|US|18.672|1961|r=3|fmt=c}}B
| A basic installation of [[IBM 7030 Stretch]] had a cost at the time of {{US$|7.78 million}} each.
| The [[IBM 7030 Stretch]] performs one floating-point multiply every {{val|2.4 |ul=microseconds}}.<ref>{{cite web|url=http://computer-history.info/Page4.dir/pages/IBM.7030.Stretch.dir/ |title=The IBM 7030 (STRETCH) |publisher=Norman Hardy |access-date=February 24, 2017}}</ref> [[Transistor computer|Second-generation]] (discrete [[
|-
| 1964
| $2.
| ${{Inflation|US|2.3|1964|r=3|fmt=c}}B
| Base model [[CDC 6600]] price: $6,891,300.
Line 585 ⟶ 617:
|-
| {{sort|2012/08|August 2012}}
| 75
| ${{Inflation|US|.75|2012|r=2|fmt=c}}
| Quad [[Radeon HD 7000 series|AMD Radeon 7970]] System
| A quad [[AMD]] [[Radeon HD 7000 series|Radeon 7970]] desktop computer reaching 16 TFLOPS of single-precision, 4 TFLOPS of double-precision computing performance. Total system cost was $3000; built using only commercially available hardware.<ref>{{cite web |url=http://www.overclock3d.net/reviews/gpu_displays/hd7970_quadfire_eyefinity_review/12 |title=HD7970 Quadfire Eyefinity Review |date=January 9, 2012 |website=OC3D.net |author=Tom Logan}}</ref>
Line 615 ⟶ 647:
|-
| {{sort|2017/07|June 2017}}
| 6
| {{Inflation|US|6.00|2017|r=2|fmt=c}}¢
| [[Zen (first generation)|AMD Ryzen 7 1700]] & [[Radeon Pro|AMD Radeon Vega Frontier Edition]] system
Line 714 ⟶ 746:
* [[Moore's law]]
* [[Multiply–accumulate operation]]
* [[Performance per watt#FLOPS per watt|Performance per watt § FLOPS per watt]]
* [[SPECfp]]
* [[SPECint]]
|