Content deleted Content added
JonasKonrad (talk | contribs) m Language |
Citation bot (talk | contribs) Add: article-number, bibcode. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 69/990 |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Class of artificial neural networks}}
{{Machine learning|Artificial neural network}}
{{Use dmy dates|date=July 2025}}
'''Graph neural networks''' ('''GNN''') are specialized [[artificial neural network]]s that are designed for tasks whose inputs are [[Graph (abstract data type)|graphs]].<ref name="wucuipeizhao2022" /><ref name="scarselli2009" /><ref name="micheli2009" /><ref name="sanchez2021" /><ref name="daigavane2021" />
One prominent example is molecular drug design.<ref>{{Cite journal |last1=Stokes |first1=Jonathan M. |last2=Yang |first2=Kevin |last3=Swanson |first3=Kyle |last4=Jin |first4=Wengong |last5=Cubillos-Ruiz |first5=Andres |last6=Donghia |first6=Nina M. |last7=MacNair |first7=Craig R. |last8=French |first8=Shawn |last9=Carfrae |first9=Lindsey A. |last10=Bloom-Ackermann |first10=Zohar |last11=Tran |first11=Victoria M. |last12=Chiappino-Pepe |first12=Anush |last13=Badran |first13=Ahmed H. |last14=Andrews |first14=Ian W. |last15=Chory |first15=Emma J. |date=
The key design element of GNNs is the use of ''pairwise message passing'', such that graph nodes iteratively update their representations by exchanging information with their neighbors. Several GNN architectures have been proposed,<ref name="scarselli2009" /><ref name="micheli2009" /><ref name="kipf2016" /><ref name="hamilton2017" /><ref name="velickovic2018" /> which implement different flavors of message passing,<ref name="bronstein2021" /><ref name="hajij2022" /> started by recursive<ref name="scarselli2009" /> or convolutional constructive<ref name="micheli2009" /> approaches. {{As of|2022}}, it is an open question whether it is possible to define GNN architectures "going beyond" message passing, or instead every GNN can be built on message passing over suitably defined graphs.<ref name="velickovic2022" />
Line 12 ⟶ 13:
In the more general subject of "geometric [[deep learning]]", certain existing neural network architectures can be interpreted as GNNs operating on suitably defined graphs.<ref name=bronstein2021 /> A [[convolutional neural network]] layer, in the context of [[computer vision]], can be considered a GNN applied to graphs whose nodes are [[pixel]]s and only adjacent pixels are connected by edges in the graph. A [[Transformer (machine learning model)|transformer]] layer, in [[natural language processing]], can be considered a GNN applied to [[complete graph]]s whose nodes are [[words]] or tokens in a passage of [[natural language]] text.
Relevant application domains for GNNs include [[Natural Language Processing|natural language processing]],<ref name="wuchen2023" /> [[social networks]],<ref name="ying2018" /> [[Citation graph|citation networks]],<ref name="stanforddata" /> [[molecular biology]],<ref>{{cite journal |last1=Zhang |first1=Weihang |last2=Cui |first2=Yang |last3=Liu |first3=Bowen |last4=Loza |first4=Martin |last5=Park |first5=Sung-Joon |last6=Nakai |first6=Kenta |date=5 April 2024 |title=HyGAnno: Hybrid graph neural network-based cell type annotation for single-cell ATAC sequencing data |url=https://academic.oup.com/bib/article/25/3/bbae152/7641197 |journal=Briefings in Bioinformatics |volume=25 |issue=3 |pages=bbae152 |doi=10.1093/bib/bbae152|pmid=38581422 |pmc=10998639 }}</ref> chemistry,<ref name="gilmer2017" /><ref>{{Cite journal |last1=Coley |first1=Connor W. |last2=Jin |first2=Wengong |last3=Rogers |first3=Luke |last4=Jamison |first4=Timothy F. |last5=Jaakkola |first5=Tommi S. |last6=Green |first6=William H. |last7=Barzilay |first7=Regina |last8=Jensen |first8=Klavs F. |date=2 January 2019
[[Open source]] [[Library (computing)|libraries]] implementing GNNs include PyTorch Geometric<ref name=fey2019 /> ([[PyTorch]]), TensorFlow GNN<ref name=tfgnn2022 /> ([[TensorFlow]]), Deep Graph Library<ref>{{Cite web |last= |title=Deep Graph Library (DGL) |url=https://www.dgl.ai/ |access-date=
== Architecture ==
Line 130 ⟶ 131:
== Heterophilic Graph Learning ==
[[Homophily]] principle, i.e., nodes with the same labels or similar attributes are more likely to be connected, has been commonly believed to be the main reason for the superiority of Graph Neural Networks (GNNs) over traditional Neural Networks (NNs) on graph-structured data, especially on node-level tasks.<ref name=":0">{{cite arXiv |eprint=2407.09618 |last1=Luan |first1=Sitao |last2=Hua |first2=Chenqing |last3=Lu |first3=Qincheng |last4=Ma |first4=Liheng |last5=Wu |first5=Lirong |last6=Wang |first6=Xinyu |last7=Xu |first7=Minkai |last8=Chang |first8=Xiao-Wen |last9=Precup |first9=Doina |last10=Ying |first10=Rex |last11=Li |first11=Stan Z. |last12=Tang |first12=Jian |last13=Wolf |first13=Guy |last14=Jegelka |first14=Stefanie |title=The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges |date=2024 |class=cs.LG }}</ref> However, recent work has identified a non-trivial set of datasets where GNN’s performance compared to the NN’s is not satisfactory.<ref>{{Cite book |last1=Luan |first1=Sitao |last2=Hua |first2=Chenqing |last3=Lu |first3=Qincheng |last4=Zhu |first4=Jiaqi |last5=Chang |first5=Xiao-Wen |last6=Precup |first6=Doina |chapter=When do We Need Graph Neural Networks for Node Classification? |date=2024 |editor-last=Cherifi |editor-first=Hocine |editor2-last=Rocha |editor2-first=Luis M. |editor3-last=Cherifi |editor3-first=Chantal |editor4-last=Donduran |editor4-first=Murat |title=Complex Networks & Their Applications XII |chapter-url=https://link.springer.com/chapter/10.1007/978-3-031-53468-3_4 |series=Studies in Computational Intelligence |volume=1141 |language=en |___location=Cham |publisher=Springer Nature Switzerland |pages=37–48|doi=10.1007/978-3-031-53468-3_4 |isbn=978-3-031-53467-6 }}</ref> [[Heterophily]], i.e., low homophily, has been considered the main cause of this empirical observation.<ref name=":1">{{Cite journal |last1=Luan |first1=Sitao |last2=Hua |first2=Chenqing |last3=Lu |first3=Qincheng |last4=Zhu |first4=Jiaqi |last5=Zhao |first5=Mingde |last6=Zhang |first6=Shuyuan |last7=Chang |first7=Xiao-Wen |last8=Precup |first8=Doina |date=6 December 2022
== Applications ==
Line 149 ⟶ 150:
=== Cyber security ===
{{See also|Intrusion detection system}}
When viewed as a graph, a network of computers can be analyzed with GNNs for anomaly detection. Anomalies within provenance graphs often correlate to malicious activity within the network. GNNs have been used to identify these anomalies on individual nodes<ref>{{Cite journal |last1=Wang |first1=Su |last2=Wang |first2=Zhiliang |last3=Zhou |first3=Tao |last4=Sun |first4=Hongbin |last5=Yin |first5=Xia |last6=Han |first6=Dongqi |last7=Zhang |first7=Han |last8=Shi |first8=Xingang |last9=Yang |first9=Jiahai |date=2022 |title=Threatrace: Detecting and Tracing Host-Based Threats in Node Level Through Provenance Graph Learning |url=https://ieeexplore.ieee.org/document/9899459/;jsessionid=NzAXdLahhjEX-xmrFzOROk4qxoaz40aJFvKcZRgjck8-zCOucJi7!380715771 |journal=IEEE Transactions on Information Forensics and Security |volume=17 |pages=3972–3987 |doi=10.1109/TIFS.2022.3208815 |issn=1556-6021|arxiv=2111.04333 |bibcode=2022ITIF...17.3972W |s2cid=243847506 }}</ref> and within paths<ref>{{Cite journal |last1=Wang |first1=Qi |last2=Hassan |first2=Wajih Ul |last3=Li |first3=Ding |last4=Jee |first4=Kangkook |last5=Yu |first5=Xiao |date=2020 |title=You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis. |journal=Network and Distributed Systems Security Symposium|doi=10.14722/ndss.2020.24167 |isbn=978-1-891562-61-7 |s2cid=211267791 |doi-access=free }}</ref> to detect malicious processes, or on the edge level<ref>{{Cite journal |last1=King |first1=Isaiah J. |last2=Huang |first2=H. Howie |date=2022 |title=Euler: Detecting Network Lateral Movement via Scalable Temporal Link Prediction |url=https://www.ndss-symposium.org/wp-content/uploads/2022-107A-paper.pdf |journal=In Proceedings of the 29th Network and Distributed Systems Security Symposium|doi=10.14722/ndss.2022.24107 |s2cid=248221601 }}</ref> to detect [[Network Lateral Movement|lateral movement]].
=== Water distribution networks ===
{{See also|Water distribution system}}
Water distribution systems can be modelled as graphs, being then a straightforward application of GNN. This kind of algorithm has been applied to water demand forecasting,<ref>{{cite journal |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022WR032299|title=Graph Convolutional Recurrent Neural Networks for Water Demand Forecasting|last=Zanfei|first=Ariele |display-authors=etal |date=2022|journal=Water Resources Research|volume=58 |issue=7 |article-number=e2022WR032299 |publisher=AGU|doi=10.1029/2022WR032299 |bibcode=2022WRR....5832299Z |access-date=
=== Computer Vision ===
Line 164 ⟶ 165:
{{See also|Natural language processing}}
Graph-based representation of text helps to capture deeper semantic relationships between words. Many studies have used graph networks to enhance performance in various text processing tasks such as text classification, question answering, Neural Machine Translation (NMT), event extraction, fact verification, etc.<ref>{{Cite journal |last1=Zhou |first1=Jie |last2=Cui |first2=Ganqu |last3=Hu |first3=Shengding |last4=Zhang |first4=Zhengyan |last5=Yang |first5=Cheng |last6=Liu |first6=Zhiyuan |last7=Wang |first7=Lifeng |last8=Li |first8=Changcheng |last9=Sun |first9=Maosong |date=1 January 2020
==References==
Line 171 ⟶ 172:
|url=https://www.nowpublishers.com/article/Details/MAL-096|journal=Foundations and Trends in Machine Learning|volume=16|issue=2|pages=119–328|doi=10.1561/2200000096 |pmid=19068426|s2cid=206756462|issn=1941-0093|arxiv=2106.06090}}</ref>
<ref name="wucuipeizhao2022">{{Cite journal|last1=Wu|first1=Lingfei|last2=Cui|first2=Peng|last3=Pei |first3=Jian|last4=Zhao|first4=Liang|date=2022|title=Graph Neural Networks: Foundations, Frontiers, and Applications|url=https://graph-neural-networks.github.io/|journal=Springer Singapore|pages=725|url-access=<!--WP:URLACCESS-->}}</ref>
<ref name="scarselli2009">{{Cite journal|last1=Scarselli|first1=Franco|last2=Gori|first2=Marco|last3=Tsoi |first3=Ah Chung|last4=Hagenbuchner|first4=Markus|last5=Monfardini|first5=Gabriele|date=2009|title=The Graph Neural Network Model
<ref name="micheli2009">{{Cite journal|last1=Micheli|first1=Alessio|title=Neural Network for Graphs: A Contextual Constructive Approach
<ref name="sanchez2021">{{Cite journal|last1=Sanchez-Lengeling|first1=Benjamin|last2=Reif|first2=Emily |last3=Pearce|first3=Adam|last4=Wiltschko|first4=Alex|date=2 September 2021
<ref name="daigavane2021">{{Cite journal|last1=Daigavane|first1=Ameya|last2=Ravindran|first2=Balaraman |last3=Aggarwal|first3=Gaurav|date=2 September 2021
<ref name="gilmer2017">{{Cite journal|last1=Gilmer|first1=Justin|last2=Schoenholz|first2=Samuel S. |last3=Riley|first3=Patrick F.|last4=Vinyals|first4=Oriol|last5=Dahl|first5=George E.|date=
<ref name="kipf2016">{{Cite journal|last1=Kipf|first1=Thomas N|last2=Welling|first2=Max|date=2016 |title=Semi-supervised classification with graph convolutional networks|journal=IEEE Transactions on Neural Networks
<ref name="hamilton2017">{{Cite journal|last1=Hamilton|first1=William|last2=Ying|first2=Rex |last3=Leskovec|first3=Jure|date=2017|title=Inductive Representation Learning on Large Graphs|url=https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf|journal=Neural Information Processing Systems|volume=31|arxiv=1706.02216|via=Stanford}}</ref>
<ref name="velickovic2018">{{Cite arXiv|last1=Veličković|first1=Petar|last2=Cucurull|first2=Guillem |last3=Casanova|first3=Arantxa|last4=Romero|first4=Adriana|last5=Liò|first5=Pietro|last6=Bengio |first6=Yoshua|date=4 February 2018
<ref name=stanforddata>{{Cite web|title=Stanford Large Network Dataset Collection |url=https://snap.stanford.edu/data/|access-date=5 July 2021
<ref name="li2018">{{cite
<ref name="bronstein2021">{{cite arXiv |last1=Bronstein |first1=Michael M. |last2=Bruna |first2=Joan |last3=Cohen |first3=Taco |last4=Veličković |first4=Petar |title=Geometric Deep Learning: Grids, Groups, Graphs Geodesics and Gauges |date=
<ref name=douglas2011>{{cite arXiv|last=Douglas|first=B. L.|date=
<ref name=xu2019>{{Cite arXiv|last1=Xu|first1=Keyulu|last2=Hu|first2=Weihua|last3=Leskovec|first3=Jure |last4=Jegelka|first4=Stefanie|author4-link=Stefanie Jegelka|date=
<ref name=velickovic2022>{{cite arXiv |last1=Veličković |first1=Petar |title=Message passing all the way up |year=2022 |class=cs.LG |eprint=2202.11097}}</ref>
<ref name=qasim2019>{{cite journal |last1=Qasim |first1=Shah Rukh |last2=Kieseler |first2=Jan |last3=Iiyama |first3=Yutaro |last4=Pierini |first4=Maurizio Pierini |title=Learning representations of irregular particle-detector geometry with distance-weighted graph networks |journal=The European Physical Journal C |date=2019 |volume=79 |issue=7 |page=608 |doi=10.1140/epjc/s10052-019-7113-9|s2cid=88518244 |doi-access=free |arxiv=1902.07987 |bibcode=2019EPJC...79..608Q }}</ref>
Line 207 ⟶ 208:
<ref name=grady2011discrete>{{cite book |last1=Grady |first1=Leo |last2=Polimeni |first2=Jonathan |title=Discrete Calculus: Applied Analysis on Graphs for Computational Science |url=http://leogrady.net/wp-content/uploads/2017/01/grady2010discrete.pdf |date=2011 |publisher=Springer }}</ref>
<ref name=xu2018>{{cite arXiv |last1=Xu |first1=Keyulu |last2=Li |first2=Chengtao |last3=Tian |first3=Yonglong |last4=Sonobe |first4=Tomohiro |last5=Kawarabayashi |first5=Ken-ichi |last6=Jegelka |first6=Stefanie|author6-link=Stefanie Jegelka |title=Representation Learning on Graphs with Jumping Knowledge Networks |date=2018 |class=cs.LG |eprint=1806.03536}}</ref>
<ref name=Lucibello2021GNN>{{cite web |last=Lucibello |first=Carlo |title=GraphNeuralNetworks.jl |website=[[GitHub]] |url=https://github.com/CarloLucibello/GraphNeuralNetworks.jl |year=2021 |access-date=
}}
Line 221 ⟶ 222:
[[Category:Artificial neural networks]]
[[Category:Graph algorithms]]
[[Category:2009 in artificial intelligence]]
|