Content deleted Content added
Update latest release to 5.4.0 |
|||
(19 intermediate revisions by 18 users not shown) | |||
Line 1:
{{redirect|SIESTA|other uses|Siesta (disambiguation)}}
{{Infobox software
| name = SIESTA
Line 18 ⟶ 17:
| ver layout = <!-- simple (default) or stacked -->
| discontinued = <!-- Set to yes, if software is discontinued, otherwise omit. -->
| latest release version = 5.4.0
| latest release date = {{Start date and age|
| repo = {{URL|https://gitlab.com/siesta-project/siesta/}}
| qid = Q7390304
Line 42 ⟶ 39:
| license = [[GPLv3]]
| website = {{URL|siesta-project.org}}
| AsOf =
}}
'''SIESTA''' ('''Spanish Initiative for Electronic Simulations with Thousands of Atoms''') is an original method and its computer program implementation, to
SIESTA's [[backronym]] is the Spanish Initiative for Electronic Simulations with Thousands of Atoms.
Since 13 May 2016, with the 4.0 version announcement, SIESTA is released under the terms of the [[GPL]] open-source license. Source packages and access to the development versions can be obtained from the [[DevOps]] platform on [[GitLab]].<ref>{{cite web|url=https://gitlab.com/siesta-project/siesta/|title=SIESTA development platform on GitLab.}}</ref> The latest version, Siesta 5.4.0, was released on 28 May 2025.
== Features ==
SIESTA has these main characteristics:
* It uses the standard [[Kohn–Sham equations|Kohn-Sham]]
* It uses norm-conserving [[pseudopotential]]s in their fully
* It uses [[atomic orbital]]s as a basis set, allowing unlimited multiple-zeta and angular momenta, polarization, and off-site orbitals. The radial shape of every orbital is numerical, and any shape can be used and provided by the user, with the only condition that it has to be of finite support, i.e., it has to be strictly zero beyond a user-provided distance from the corresponding nucleus. Finite-support basis sets are the key
* Projects the electron
* Besides the standard [[Rayleigh–Ritz method|Rayleigh-Ritz eigenstate method]], it allows the use of localized linear combinations of the occupied orbitals (valence-bond or Wannier-like functions), making the computer time and memory scale linearly with the number of atoms. Simulations with several hundred atoms are feasible with modest workstations.
* It is written in [[Fortran 95]] and memory is allocated dynamically.
* It may be compiled for serial or parallel execution (under MPI parallelization, OpenMP threading, and GPU offloading).
SIESTA routinely provides:
Line 66 ⟶ 63:
* Stress tensor.
* Electric dipole moment.
* Atomic, orbital, and bond populations ([[Mulliken population analysis|Mulliken]]).
* Electron density.
And also (though not all options are compatible):
Line 72 ⟶ 69:
* Constant-temperature molecular dynamics (Nose thermostat).
* Variable cell dynamics (Parrinello-Rahman).
* [[Spin polarization|Spin
* k-sampling of the [[Brillouin zone]].
*
* COOP and COHP curves for chemical bonding analysis.
* [[Dielectric polarization]].
Line 80 ⟶ 77:
* [[Electronic band structure|Band structure]].
* Ballistic electron transport under non-equilibrium (through TranSIESTA)
* Density functional Bogoliubov-de Gennes theory for superconductors
== Strengths of SIESTA ==
SIESTA's main strengths are:
#
# It can tackle
#
The use of a linear combination of numerical atomic orbitals makes SIESTA a
▲The use of linear combination of numerical atomic orbitals makes SIESTA a flexible and efficient DFT code. SIESTA is able to produce very fast calculations with small basis sets, allowing computing systems with a thousand of atoms. At the same time, the use of more complete and accurate bases allows to achieve accuracies comparable to those of standard plane waves calculations, still at an advantageous computational cost.
== Implemented Solutions ==
SIESTA is in continuous development since it was implemented in 1996. The main solutions implemented in the current version are:
* Collinear and non-collinear spin
* Efficient implementation of Van der Waals functional
* [[Wannier function]] implementation
* TranSIESTA/TBTrans module with any number of electrodes N>=1
* On-site Coulomb corrections (DFT+U)
* Description of
* [[Spin-orbit coupling]] (SOC)
* Topological insulator, semiconductor structures, and quantum-transport calculations
Line 109 ⟶ 106:
== Post-processing tools ==
== Applications ==
Since its implementation, SIESTA has
== See also ==
Line 118 ⟶ 115:
==References==
* {{Cite journal|doi=10.1063/5.0005077|title=Siesta: Recent developments and applications|year=2020|last1=García|first1=Alberto|last2=Papior|first2=Nick|last3=Akhtar|first3=Arsalan|last4=Artacho|first4=Emilio|last5=Blum|first5=Volker|last6=Bosoni|first6=Emanuele|last7=Brandimarte|first7=Pedro|last8=Brandbyge|first8=Mads|last9=Cerdá|first9=J.I.|last10=Corsetti|first10=Fabiano|last11=Cuadrado|first11=Ramón|last12=Dikan|first12=Vladimir|last13=Ferrer|first13=Jaime|last14=Gale|first14=Julian|last15=García-Fernández|first15=Pablo|last16=García-Suárez|first16=V.M.|last17=García|first17=Sandra|last18=Huhs|first18=Georg|last19=Illera|first19=Sergio|last20=Korytár|first20=Richard|last21=Koval|first21=Peter|last22=Lebedeva|first22=Irina|last23=Lin|first23=Lin|last24=López-Tarifa|first24=Pablo|last25=G. Mayo|first25=Sara|last26=Mohr|first26=Stephan|last27=Ordejón|first27=Pablo|last28=Postnikov|first28=Andrei|last29=Pouillon|first29=Yann|last30=Pruneda|first30=Miguel|last31=Robles|first31=Roberto|last32=Sánchez-Portal|first32=Daniel|last33=Soler|first33=Jose M.|last34=Ullah|first34=Rafi|last35=Yu|first35=Victor Wen-zhe|last36=Junquera|first36=Javier|journal=Journal of Chemical Physics|volume=152|issue=20|pages=204108|pmid=32486661 |hdl=10902/20680|s2cid=219179270 |hdl-access=free|arxiv=2006.01270}} Postprint is available at {{hdl|10261/213028}}.
* {{Cite journal|doi=10.1103/PhysRevB.61.13639|title=Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems|year=2000|last1=Izquierdo|first1=J.|last2=Vega|first2=A.|last3=Balbás|first3=L.|last4=Sánchez-Portal|first4=Daniel|last5=Junquera|first5=Javier|last6=Artacho|first6=Emilio|last7=Soler|first7=Jose|last8=Ordejón|first8=Pablo|journal=Physical Review B|volume=61|issue=20|pages=13639|bibcode = 2000PhRvB..6113639I }}
* {{Cite journal|doi=10.1103/PhysRevB.63.172406|title=All-electron and pseudopotential study of the spin-polarization of the V(001) surface: LDA versus GGA|year=2001|last1=Robles|first1=R.|last2=Izquierdo|first2=J.|last3=Vega|first3=A.|last4=Balbás|first4=L.|journal=Physical Review B|volume=63|issue=17|pages=172406|arxiv = cond-mat/0012064 |bibcode = 2001PhRvB..63q2406R |s2cid=17632035 }}
*{{cite journal | title = The SIESTA method for ''ab initio'' order-''N'' materials simulation | journal = Journal of Physics: Condensed Matter | last1 = Soler | first1 = José M. | volume = 14 | pages = 2745–2779 | year = 2002 | doi = 10.1088/0953-8984/14/11/302 |arxiv = cond-mat/0104182 |bibcode = 2002JPCM...14.2745S | last2 = Artacho | first2 = Emilio | last3 = Gale | first3 = Julian D | last4 = García | first4 = Alberto | last5 = Junquera | first5 = Javier | last6 = Ordejón | first6 = Pablo | last7 = Sánchez-Portal | first7 = Daniel | issue = 11 | s2cid = 250812001 }}
{{Reflist}}
Line 132 ⟶ 129:
{{Chemistry software}}
Delphisoftware apps
<!-- Categories -->
[[Category:Computational chemistry software]]
|