Content deleted Content added
→== Middle temporal visual area (V5) ==: V5 anchor to match other section titles |
|||
(One intermediate revision by one other user not shown) | |||
Line 15:
| Vein =
}}
The '''visual cortex''' of the [[brain]] is the area of the [[cerebral cortex]] that processes [[visual perception|visual information]]. It is located in the [[occipital lobe]]. Sensory input originating from the [[eye]]s travels through the [[lateral geniculate nucleus]] in the [[thalamus]] and then reaches the visual cortex. The area of the visual cortex that receives the sensory input from the lateral geniculate nucleus is the primary visual cortex, also known as visual area 1 ([[Brodmann area#BA17,V1|V1]]), [[Brodmann area]] 17<!---don't wikilink it as long as it redirects to here--->, or the '''striate cortex'''. The [[extrastriate cortex|extrastriate]] areas consist of visual areas 2, 3, 4, and 5 (also known as V2, V3, V4, and V5, or [[Brodmann area 18]] and all [[Brodmann area 19]]).<ref>{{cite web |
Both [[cerebral hemisphere|hemispheres of the brain]] include a visual cortex; the visual cortex in the left hemisphere receives signals from the right [[visual field]], and the visual cortex in the right hemisphere receives signals from the left visual field.
Line 145:
Recent work has shown that V4 exhibits long-term plasticity,<ref>{{cite journal | vauthors = Schmid MC, Schmiedt JT, Peters AJ, Saunders RC, Maier A, Leopold DA | title = Motion-sensitive responses in visual area V4 in the absence of primary visual cortex | journal = The Journal of Neuroscience | volume = 33 | issue = 48 | pages = 18740–18745 | date = November 2013 | pmid = 24285880 | pmc = 3841445 | doi = 10.1523/JNEUROSCI.3923-13.2013 | doi-access = free }}</ref> encodes stimulus salience, is gated by signals coming from the [[frontal eye fields]],<ref>{{cite journal | vauthors = Moore T, Armstrong KM | title = Selective gating of visual signals by microstimulation of frontal cortex | journal = Nature | volume = 421 | issue = 6921 | pages = 370–373 | date = January 2003 | pmid = 12540901 | doi = 10.1038/nature01341 | s2cid = 4405385 | bibcode = 2003Natur.421..370M | author-link1 = Tirin Moore }}</ref> and shows changes in the spatial profile of its receptive fields with attention.{{citation needed|date=March 2016}} In addition, it has recently been shown that activation of area V4 in humans (area V4h) is observed during the perception and retention of the color of objects, but not their shape.<ref>{{cite conference | vauthors = Kozlovskiy S, Rogachev A |title=How Areas of Ventral Visual Stream Interact When We Memorize Color and Shape Information |date=2021 |book-title=Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics. Intercognsci 2020 |series=Advances in Intelligent Systems and Computing |volume=1358 |pages=95–100 | veditors = Velichkovsky BM, Balaban PM, Ushakov VL |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-71637-0_10 |isbn=978-3-030-71636-3 }}</ref><ref>{{Cite journal | vauthors = Kozlovskiy S, Rogachev A |date=October 2021 |title=Ventral Visual Cortex Areas and Processing of Color and Shape in Visual Working Memory |journal=International Journal of Psychophysiology |language=en |volume=168 |issue=Supplement |pages=S155–S156 |doi=10.1016/j.ijpsycho.2021.07.437|s2cid=239648133 }}</ref>
== Middle temporal visual area (V5) <span class="anchor" id="V5"></span> ==<!--
The '''middle temporal visual area''' ('''MT''' or '''V5''') is a region of extrastriate visual cortex. In several species of both [[New World monkey]]s and [[Old World monkey]]s the MT area contains a high concentration of direction-selective neurons.<ref name="BornBradley" /> The MT in primates is thought to play a major role in the [[motion perception|perception of motion]], the integration of local motion signals into global percepts, and the guidance of some [[Eye movement (sensory)|eye movements]].<ref name="BornBradley">{{cite journal | vauthors = Born RT, Bradley DC | title = Structure and function of visual area MT | journal = Annual Review of Neuroscience | volume = 28 | pages = 157–189 | year = 2005 | pmid = 16022593 | doi = 10.1146/annurev.neuro.26.041002.131052 }}</ref>
|