Content deleted Content added
No edit summary |
Citation bot (talk | contribs) Removed URL that duplicated identifier. Removed access-date with no URL. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 922/990 |
||
(27 intermediate revisions by 20 users not shown) | |||
Line 1:
{{refimprove|date=December 2009}}
{{Floating-point}}
In [[computing]], a '''normal number''' is a non-zero number in a [[floating point|floating-point representation]] which is within the balanced range supported by a given floating-point format.▼
▲In [[computing]], a '''normal number''' is a non-zero number in a [[floating point|floating-point representation]] which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its [[significand]].
<math display="block">b^{E_{\text{min}}}</math>
where ''
Similarly, the magnitude of the '''largest normal number''' in a format is given by
In the [[IEEE 754]] binary and proposed decimal formats, ''p'', ''emin'', and ''emax'' have the following values:▼
{| class="wikitable"▼
:<math display="block">b^{E_{\text{max}}}\cdot\left(b - b^{1-p}\right)</math>
where ''p'' is the precision of the format in [[numerical digit|digit]]s and ''<math display="inline">E_{\text{min}}</math>'' is related to ''<math display="inline">E_{\text{max}}</math>'' as:
<math display="block">E_{\text{min}}\, \overset{\Delta}{\equiv}\, 1 - E_{\text{max}} = \left(-E_{\text{max}}\right) + 1</math>
▲In the [[IEEE 754]] binary and
| title = IEEE Standard for Floating-Point Arithmetic
| date = 2008-08-29
| doi =10.1109/IEEESTD.2008.4610935
| isbn = 978-0-7381-5752-8
}}</ref>
▲{| class="wikitable" style="text-align: right;" |
|+Smallest and Largest Normal Numbers for common numerical Formats
!Format!!<math>b</math>!!<math>p</math>!!<math>E_{\text{min}}</math>!!<math>E_{\text{max}}</math>
!Smallest Normal Number
!Largest Normal Number
|-
|[[Half-precision floating-point format|binary16]]||2||11||−14||15
|<math>2^{-14} \equiv 0.00006103515625</math>
|<math>2^{15}\cdot\left(2 - 2^{1-11}\right) \equiv 65504</math>
|-
|[[Single-precision floating-point format|binary32]]||2||24||−126||127
|<math>2^{-126} \equiv \frac{1}{2^{126}}</math>
|<math>2^{127}\cdot\left(2 - 2^{1-24}\right)</math>
|-
|[[Double-precision floating-point format|binary64]]||2||53||−1022||1023
|binary 128-bit||113||−16382||16383▼
|<math>2^{-1022} \equiv \frac{1}{2^{1022}}</math>
|<math>2^{1023}\cdot\left(2 - 2^{1-53}\right)</math>
|-
|decimal 32-bit||7||−95||96▼
|<math>2^{-16382} \equiv \frac{1}{2^{16382}}</math>
|<math>2^{16383}\cdot\left(2 - 2^{1-113}\right)</math>
|-
|decimal 64-bit||16||−383||384▼
|<math>10^{-95} \equiv \frac{1}{10^{95}}
</math>
|<math>10^{96}\cdot\left(10 - 10^{1-7}\right) \equiv 9.999999 \cdot 10^{96}</math>
|-
|decimal 128-bit||34||−6143||6144▼
|<math>10^{-383} \equiv \frac{1}{10^{383}}
</math>
|<math>10^{384}\cdot\left(10 - 10^{1-16}\right)</math>
|-
|<math>10^{-6143} \equiv \frac{1}{10^{6143}}
</math>
|<math>10^{6144}\cdot\left(10 - 10^{1-34}\right)</math>
|}
For example, in the smallest decimal format in the table (decimal32), the range of positive normal numbers is 10<sup>−95</sup> through 9.999999
Non-zero numbers smaller in magnitude than the smallest normal number are called [[
Zero is considered neither normal nor subnormal.
== See also ==
* [[Normalized number]]
* [[Half-precision floating-point format]]
* [[Single-precision floating-point format]]
* [[Double-precision floating-point format]]
== References ==
<references />
{{DEFAULTSORT:Normal Number (Computing)}}
▲Non-zero numbers smaller in magnitude than the smallest normal number are called [[denormal|denormalized numbers]] or [[denormal|subnormal numbers]]. Zero is neither normal nor subnormal.
[[Category:Computer arithmetic]]
|