Content deleted Content added
→References: update an external link |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 986/990 |
||
(14 intermediate revisions by 9 users not shown) | |||
Line 1:
In [[signal processing]], '''''overlap–save''''' is the traditional name for an efficient way to evaluate the [[Convolution#Discrete convolution|discrete convolution]] between a very long signal <math>x[n]</math> and a [[finite impulse response]] (FIR) filter <math>h[n]</math>''':'''
{{NumBlk|:|<math>▼
{{Equation box 1
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>
y[n] = x[n] * h[n]
\ \triangleq\ \sum_{m=-\infty}^{\infty} h[m] \cdot x[n - m]
= \sum_{m=1}^{M} h[m] \cdot x[n - m],
</math>
|{{EquationRef|Eq.1}}}}}} where {{nowrap|''h''[''m''] {{=}} 0}} for ''m'' outside the region {{nowrap|[1, ''M'']}}.
This article uses common abstract notations, such as <math display="inline">y(t) = x(t) * h(t),</math> or <math display="inline">y(t) = \mathcal{H}\{x(t)\},</math> in which it is understood that the functions should be thought of in their totality, rather than at specific instants <math display="inline">t</math> (see [[Convolution#Notation]]).
Line 10 ⟶ 15:
[[Image:Overlap-save algorithm.svg|thumb|right|500px|Fig 1: A sequence of four plots depicts one cycle of the overlap–save convolution algorithm. The 1st plot is a long sequence of data to be processed with a lowpass FIR filter. The 2nd plot is one segment of the data to be processed in piecewise fashion. The 3rd plot is the filtered segment, with the usable portion colored red. The 4th plot shows the filtered segment appended to the output stream.{{efn-ua|[[#refRabiner|Rabiner and Gold]], Fig 2.35, fourth trace.}} The FIR filter is a boxcar lowpass with M=16 samples, the length of the segments is L=100 samples and the overlap is 15 samples.]]
The concept is to compute short segments of ''y''[''n''] of an arbitrary length ''L'', and concatenate the segments together.
Consider a segment that begins at ''n'' = ''kL'' + ''M'', for any integer ''k'', and define''':'''
:<math>x_k[n] \ \triangleq
Line 20 ⟶ 27:
:<math>y_k[n] \ \triangleq \ x_k[n]*h[n] = \sum_{m=1}^{M} h[m] \cdot x_k[n-m].</math>
Then, for <math>kL+M+1 \le n \le kL+L+M</math>, and equivalently <math>M+1 \le n-kL \le L+M</math>, we can write:
:<math>y[n] = \sum_{m=1}^{M} h[m] \cdot x_k[n-kL-m] \ \ \triangleq \ \ y_k[n-kL].</math>
With the substitution
|Shifting the undesirable edge effects to the last M-1 outputs is a potential run-time convenience, because the IDFT can be computed in the <math>y[n]</math> buffer, instead of being computed and copied. Then the edge effects can be overwritten by the next IDFT. A subsequent footnote explains how the shift is done, by a time-shift of the impulse response.}}'''
If we periodically extend ''x''<sub>''k''</sub>[''n''] with period ''N'' ≥ ''L'' + ''M'' − 1, according to''':'''
Line 32 ⟶ 38:
:<math>x_{k,N}[n] \ \triangleq \ \sum_{\ell=-\infty}^{\infty} x_k[n - \ell N],</math>
the convolutions <math>(x_{k,N})*h\,</math> and <math>x_k*h\,</math> are equivalent in the region
{{Equation box 1
{{NumBlk|:|<math>y_k[n]\ =\ \scriptstyle \text{IDFT}_N \displaystyle (\ \scriptstyle \text{DFT}_N \displaystyle (x_k[n])\cdot\ \scriptstyle \text{DFT}_N \displaystyle (h[n])\ ),</math>|{{EquationRef|Eq.2}}}}▼
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>y_k[n]\ =\ \scriptstyle \text{IDFT}_N \displaystyle (\ \scriptstyle \text{DFT}_N \displaystyle (x_k[n])\cdot\ \scriptstyle \text{DFT}_N \displaystyle (h[n])\ ),</math>
|{{EquationRef|Eq.2}}}}}}
where''':'''
Line 67 ⟶ 76:
}} Each iteration produces {{nowrap|'''N-M+1'''}} output samples, so the number of complex multiplications per output sample is about''':'''
{{Equation box 1
{{NumBlk|:|<math>\frac{N (\log_2(N) + 1)}{N-M+1}.\,</math>|{{EquationRef|Eq.3}}}}▼
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>\frac{N (\log_2(N) + 1)}{N-M+1}.\,</math>
|{{EquationRef|Eq.3}}}}}}
For example, when
Instead of {{EquationNote|Eq.1}}, we can also consider applying {{EquationNote|Eq.2}} to a long sequence of length <math>N_x</math> samples. The total number of complex multiplications would be:
Line 79 ⟶ 91:
:<math>N_x\cdot (\log_2(N) + 1)\cdot \frac{N}{N-M+1}.</math>
Hence the ''cost'' of the overlap–save method scales almost as <math>O\left(N_x\log_2 N\right)</math> while the cost of a single, large circular convolution is almost <math>O\left(N_x\log_2 N_x \right)</math>.
==Overlap–discard==
Line 94 ⟶ 106:
== See also ==
* [[Overlap–add method]]
* [[Circular convolution#Example]]
==Notes==
Line 103 ⟶ 116:
<ref name=f.harris>
{{cite book |author=Harris, F.J. |year=1987 |title=Handbook of Digital Signal Processing |editor=D.F.Elliot |___location=San Diego |publisher=Academic Press |pages=633–699 |isbn=0122370759
}}</ref>▼
<ref name=OLA>
{{cite web|url=https://www.dsprelated.com/freebooks/sasp/Overlap_Add_OLA_STFT_Processing.html|title=Overlap-Add (OLA) STFT Processing {{!}} Spectral Audio Signal Processing |website=www.dsprelated.com |access-date=2024-03-02 |quote=The name overlap-save comes from the fact that L-1 samples of the previous frame [here: M-1 samples of the current frame] are saved for computing the next frame.
}}</ref>
Line 113 ⟶ 130:
| last =Borgerding |first=Mark |title=Turning Overlap–Save into a Multiband Mixing, Downsampling Filter Bank
| journal =IEEE Signal Processing Magazine |issue= March 2006 |pages=158–161 |year=2006
|volume=23 |doi=10.1109/MSP.2006.1598092 |bibcode=2006ISPM...23..158B }}</ref>
▲}}</ref>
}}
{{refbegin}}
Line 128 ⟶ 144:
| chapter=2.25
| pages=[https://archive.org/details/theoryapplicatio00rabi/page/63 63–67]
| chapter-url-access=registration
| chapter-url=https://archive.org/details/theoryapplicatio00rabi/page/67
}}
#{{cite patent
|ref=refCarlin
|title=Wideband communication intercept and direction finding device using hyperchannelization
|invent1=Carlin, Joe
|invent2=Collins, Terry
|invent3=Hays, Peter
|invent4=Hemmerdinger, Barry E. Kellogg, Robert L. Kettig, Robert L. Lemmon, Bradley K. Murdock, Thomas E. Tamaru, Robert S. Ware, Stuart M.
|pubdate=1999-12-10
|fdate=1999-12-10
Line 144 ⟶ 160:
|status=patent
|number=6898235
}},
{{refend}}
== External
* Dr. Deepa Kundur, [https://www.comm.utoronto.ca/~dkundur/course_info/real-time-DSP/notes/8_Kundur_Overlap_Save_Add.pdf Overlap Add and Overlap Save], University of Toronto
{{DEFAULTSORT:Overlap-save method}}
|