Content deleted Content added
add a citation |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 986/990 |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1:
In [[signal processing]], '''''overlap–save''''' is the traditional name for an efficient way to evaluate the [[Convolution#Discrete convolution|discrete convolution]] between a very long signal <math>x[n]</math> and a [[finite impulse response]] (FIR) filter <math>h[n]</math>''':'''
{{NumBlk|:|<math>▼
{{Equation box 1
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>
y[n] = x[n] * h[n]
\ \triangleq\ \sum_{m=-\infty}^{\infty} h[m] \cdot x[n - m]
= \sum_{m=1}^{M} h[m] \cdot x[n - m],
</math>
|{{EquationRef|Eq.1}}}}}} where {{nowrap|''h''[''m''] {{=}} 0}} for ''m'' outside the region {{nowrap|[1, ''M'']}}.
This article uses common abstract notations, such as <math display="inline">y(t) = x(t) * h(t),</math> or <math display="inline">y(t) = \mathcal{H}\{x(t)\},</math> in which it is understood that the functions should be thought of in their totality, rather than at specific instants <math display="inline">t</math> (see [[Convolution#Notation]]).
Line 10 ⟶ 15:
[[Image:Overlap-save algorithm.svg|thumb|right|500px|Fig 1: A sequence of four plots depicts one cycle of the overlap–save convolution algorithm. The 1st plot is a long sequence of data to be processed with a lowpass FIR filter. The 2nd plot is one segment of the data to be processed in piecewise fashion. The 3rd plot is the filtered segment, with the usable portion colored red. The 4th plot shows the filtered segment appended to the output stream.{{efn-ua|[[#refRabiner|Rabiner and Gold]], Fig 2.35, fourth trace.}} The FIR filter is a boxcar lowpass with M=16 samples, the length of the segments is L=100 samples and the overlap is 15 samples.]]
The concept is to compute short segments of ''y''[''n''] of an arbitrary length ''L'', and concatenate the segments together. That requires longer input
Consider a segment that begins at ''n'' = ''kL'' + ''M'', for any integer ''k'', and define''':'''
Line 35 ⟶ 40:
the convolutions <math>(x_{k,N})*h\,</math> and <math>x_k*h\,</math> are equivalent in the region <math> M+1 \le n \le L+M </math>. It is therefore sufficient to compute the '''N'''-point [[circular convolution|circular (or cyclic) convolution]] of <math>x_k[n]\,</math> with <math>h[n]\,</math> in the region [1, ''N'']. The subregion [''M'' + 1, ''L'' + ''M''] is appended to the output stream, and the other values are <u>discarded</u>. The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the [[Discrete Fourier transform#Circular convolution theorem and cross-correlation theorem|circular convolution theorem]]''':'''
{{Equation box 1
{{NumBlk|:|<math>y_k[n]\ =\ \scriptstyle \text{IDFT}_N \displaystyle (\ \scriptstyle \text{DFT}_N \displaystyle (x_k[n])\cdot\ \scriptstyle \text{DFT}_N \displaystyle (h[n])\ ),</math>|{{EquationRef|Eq.2}}}}▼
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>y_k[n]\ =\ \scriptstyle \text{IDFT}_N \displaystyle (\ \scriptstyle \text{DFT}_N \displaystyle (x_k[n])\cdot\ \scriptstyle \text{DFT}_N \displaystyle (h[n])\ ),</math>
|{{EquationRef|Eq.2}}}}}}
where''':'''
Line 68 ⟶ 76:
}} Each iteration produces {{nowrap|'''N-M+1'''}} output samples, so the number of complex multiplications per output sample is about''':'''
{{Equation box 1
{{NumBlk|:|<math>\frac{N (\log_2(N) + 1)}{N-M+1}.\,</math>|{{EquationRef|Eq.3}}}}▼
|indent= |cellpadding= 0 |border= 0 |background colour=white
▲|equation={{NumBlk|:|<math>\frac{N (\log_2(N) + 1)}{N-M+1}.\,</math>
|{{EquationRef|Eq.3}}}}}}
For example, when
Instead of {{EquationNote|Eq.1}}, we can also consider applying {{EquationNote|Eq.2}} to a long sequence of length <math>N_x</math> samples. The total number of complex multiplications would be:
Line 80 ⟶ 91:
:<math>N_x\cdot (\log_2(N) + 1)\cdot \frac{N}{N-M+1}.</math>
Hence the ''cost'' of the overlap–save method scales almost as <math>O\left(N_x\log_2 N\right)</math> while the cost of a single, large circular convolution is almost <math>O\left(N_x\log_2 N_x \right)</math>.
==Overlap–discard==
Line 95 ⟶ 106:
== See also ==
* [[Overlap–add method]]
* [[Circular convolution#Example]]
==Notes==
Line 118 ⟶ 130:
| last =Borgerding |first=Mark |title=Turning Overlap–Save into a Multiband Mixing, Downsampling Filter Bank
| journal =IEEE Signal Processing Magazine |issue= March 2006 |pages=158–161 |year=2006
|volume=23 |doi=10.1109/MSP.2006.1598092 |
}}
{{refbegin}}
Line 139 ⟶ 150:
|ref=refCarlin
|title=Wideband communication intercept and direction finding device using hyperchannelization
|invent1=Carlin, Joe
|invent2=Collins, Terry
|invent3=Hays, Peter
|invent4=Hemmerdinger, Barry E. Kellogg, Robert L. Kettig, Robert L. Lemmon, Bradley K. Murdock, Thomas E. Tamaru, Robert S. Ware, Stuart M.
|pubdate=1999-12-10
|fdate=1999-12-10
Line 151 ⟶ 162:
}}, <!--template creates link to worldwide.espacenet.com-->also available at https://patentimages.storage.googleapis.com/4d/39/2a/cec2ae6f33c1e7/US6898235.pdf
{{refend}}
== External links ==
* Dr. Deepa Kundur, [https://www.comm.utoronto.ca/~dkundur/course_info/real-time-DSP/notes/8_Kundur_Overlap_Save_Add.pdf Overlap Add and Overlap Save], University of Toronto
{{DEFAULTSORT:Overlap-save method}}
|