Content deleted Content added
Roger Wood (talk | contribs) Added reference "Boosts HDD Capacity" |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 24/967 |
||
(29 intermediate revisions by 18 users not shown) | |||
Line 1:
{{Short description|Method for interpreting data in digital storage systems}}
In [[computer data storage]], '''partial-response maximum-likelihood''' ('''PRML''') is a method for recovering the [[Digital signal (electronics)|digital data]] from the weak analog read-back signal picked up by the [[Disk_read-and-write_head|head]] of a magnetic [[Hard disk drive|disk drive]] or [[tape drive]]. PRML was introduced to recover data more reliably or at a greater [[areal_density_(computer_storage)|areal-density]] than earlier simpler schemes such as peak-detection<ref>[https://ieeexplore.ieee.org/document/542278 G. Fisher, W. Abbott, J. Sonntag, R. Nesin, "PRML detection boosts hard-disk drive capacity", IEEE Spectrum, Vol. 33, No. 11, pp. 70-76, Nov. 1996]</ref>. These advances are important because most of the digital data in the world is stored using [[magnetic recording]] on Hard Disk Drives (HDD) or a digital tape recorders. ▼
▲In [[computer data storage]], '''partial-response maximum-likelihood''' ('''PRML''') is a method for recovering the [[Digital signal (electronics)|digital data]] from the weak analog read-back signal picked up by the [[
Ampex introduced PRML in a tape drive in 1984. IBM introduced PRML in a disk drive in 1990 and also coined the acronym 'PRML'. Many advances have taken place since the initial introduction. Recent read/write channels operate a much higher data-rates, are fully adaptive, and, in particular, include the ability to handle nonlinear signal distortion and non-stationary, colored, data-dependent noise ([[noise-predictive maximum-likelihood detection|PDNP or NPML]]). ▼
▲Ampex introduced PRML in a tape drive in 1984.
'Partial Response' refers to the fact that part of the response to an individual bit may occur at one sample instant while other parts fall in other sample instants. 'Maximum-likelihood' refers to the detector finding the bit-pattern most likely to have been responsible for the read-back waveform. ▼
▲''Partial
== Theoretical development ==
[[File:Class 4 Partial-Response Eye Diagram.jpg|thumb|Continuous-time Partial-Response (class 4) and corresponding 'eye pattern']]
'''Partial-response''' was first proposed by Adam Lender in 1963.<ref>A. Lender, "[https://ieeexplore.ieee.org/abstract/document/6373379
'''[[Maximum-likelihood]]''' decoding using the eponymous [[Viterbi algorithm]] was proposed in 1967 by [[Andrew Viterbi]] as a means of decoding [[convolutional codes]].<ref>A. Viterbi, "[https://ieeexplore.ieee.org/document/1054010 Error bounds for convolutional codes and an asymptotically optimum decoding algorithm]", IEEE Trans. Info. Theory, Vol. 13, No. 2, pp. 260-269, Apr. 1967</ref>
By 1971, [[Hisashi Kobayashi]] at [[IBM]] had recognized that the Viterbi == Implementation in products ==
[[File:PRML chronology circa 1994 (scanned Nov 1, 2019).pdf|thumb|Early PRML chronology (created around 1994)]]
The first two implementations were in Tape (Ampex - 1984) and then in hard disk drives (IBM - 1990). Both are significant milestones with the [[Ampex]] implementation focused on very high data-rate for a digital instrumentation recorder and [[IBM]] focused on a high level of integration and low power consumption for a mass-market HDD.
=== Tape recording ===
The first implementation of PRML was shipped in 1984 in the Ampex Digital Cassette Recording System (DCRS). The chief engineer on DCRS was [[Charles Coleman (engineer)|Charles Coleman]]. The machine evolved from a 6-head, transverse-scan, digital [[video tape recorder]]. DCRS was a cassette-based, digital, instrumentation recorder capable of extended play times at very high data-rate.<ref>T. Wood, "[http://www.thic.org/pdf/Oct96/ampex.twood.pdf
The heads and the read/write channel ran at the (then) remarkably high data-rate of 117 Mbits/s.<ref>[https://ieeexplore.ieee.org/document/5261308 C. Coleman, D. Lindholm, D. Petersen, and R. Wood, "High Data Rate Magnetic Recording in a Single Channel", J. IERE, Vol., 55, No. 6, pp. 229-236, June 1985. (invited) (Charles Babbage Award for Best Paper)]</ref> The PRML electronics were implemented with four 4-bit, [[Plessey]] [[analog-to-digital converter]]s (A/D) and [https://en.wikichip.org/wiki/fairchild/100k 100k ECL logic].<ref>[https://www.computerhistory.org/collections/catalog/102741157 Computer History Museum, #102741157, "Ampex PRML Prototype Circuit", circa 1982]</ref>. A similar channel was implemented at 20 Mbit/s on a prototype 8-inch HDD<ref name=8inch>[https://ieeexplore.ieee.org/document/1063460 R. Wood, S. Ahlgrim, K. Hallamasek, R. Stenerson, "An Experimental Eight-inch Disc Drive with One-hundred Megabytes Per Surface", IEEE Trans. Mag., vol. MAG-20, No. 5, pp. 698-702, Sept. 1984. (invited)]</ref>. These implementations and their mode of operation are best described in a paper by Wood and Petersen.<ref>[https://ieeexplore.ieee.org/document/1096563 R. Wood and D. Petersen, "Viterbi Detection of Class IV Partial Response on a Magnetic Recording Channel", IEEE Trans. Comm., Vol., COM-34, No. 5, pp. 454-461, May 1986 (invited)]</ref>▼
▲The heads and the read/write channel ran at the (then) remarkably high data-rate of 117
=== Hard disk drives (HDD) ===▼
In 1990, IBM shipped the first PRML channel in an HDD in the [https://en.wikipedia.org/w/index.php?title=History_of_IBM_magnetic_disk_drives§ion=44 IBM 0681] (called Redwing during its development). The IBM 0681 was the last HDD product developed at the [[IBM Hursley]], lab. in the UK. It was full-height 5¼-inch form-factor with up to 12 of 130 mm disks and had a maximum capacity of 857 MB. ▼
▲In 1990, IBM shipped the first PRML channel in an HDD in the [
The PRML channel for the IBM 0681 was developed in [[IBM Rochester]] lab. in Minnesota<ref>[https://ieeexplore.ieee.org/document/278677 J. Coker, R. Galbraith, G. Kerwin, J. Rae, P. Ziperovich, "Implementation of PRML in a rigid disk drive", IEEE Trans. Magn., Vol. 27, No. 6, pp. 4538-43, Nov. 1991]</ref> with support from the [[IBM Zurich]] Research lab. in [[Switzerland]].<ref>[https://ieeexplore.ieee.org/document/124468 R.Cidecyan, F.Dolvio, R. Hermann, W.Hirt, W. Schott "A PRML System for Digital Magnetic Recording", IEEE Journal on Selected Areas in Comms, vol.10, No.1, pp.38-56, Jan 1992]</ref> A parallel R&D effort at IBM San Jose did not lead directly to a product<ref>[https://ieeexplore.ieee.org/document/104703 T. Howell, et al. "Error Rate Performance of Experimental Gigabit per Square Inch Recording Components", IEEE Trans. Magn., Vol. 26, No. 5, pp. 2298-2302, 1990]</ref>. A competing technology at the time was 17ML<ref>[https://www.researchgate.net/publication/224663211 A. Patel, "Performance Data for a Six-Sample Look-Ahead 17ML Detection Channel", IEEE Trans. Magn., Vol. 29, No. 6, pp. 4012-4014, Dec. 1993]</ref> an example of Finite-Depth Tree-Search (FDTS)<ref>[https://patents.google.com/patent/US5136593A/en R. Carley, J. Moon, "Apparatus and method for fixed delay tree search", filed Oct. 30th, 1989]</ref><ref>[https://ieeexplore.ieee.org/document/42527 R. Wood, "New Detector for 1,k Codes Equalized to Class II Partial Response", IEEE Trans. Magn., Vol. MAG-25, No. 5, pp. 4075-4077, Sept. 1989]</ref>. <br>▼
The IBM 0681 read/write channel ran at a data-rate of 24 Mbits/s but was more highly integrated with the entire channel contained in a single 68-pin [[Plastic leaded chip carrier|PLCC]] [[integrated circuit]] operating off a 5 volt supply. As well as the fixed analog equalizer, the channel boasted a simple adaptive digital 'cosine equalizer'<ref>[https://ieeexplore.ieee.org/document/1059216 T. Kameyama, S. Takanami, R. Arai, "Improvement of recording density by means of cosine equalizer", IEEE Trans. Magn., Vol. 12, No. 6, pp. 746-748, Nov. 1976]</ref> after the A/D to compensate for changes in radius and/or changes in the magnetic components. ▼
▲The PRML channel for the IBM 0681 was developed in [[IBM Rochester]] lab. in Minnesota<ref>
▲The IBM 0681 read/write channel ran at a data-rate of 24
=== Write precompensation ===
The presence of nonlinear transition-shift (NLTS) distortion on [[Non-return-to-zero|NRZ]]
Ampex was the first to recognize the impact of NLTS on PR4.<ref>P. Newby, R. Wood, "[https://ieeexplore.ieee.org/document/1064566
== Further developments ==
=== Generalized PRML ===
PR4 is characterized by an equalization target (+1, 0, -1) in bit-response sample values or (1-D)(1+D) in polynomial notation (here, D is the delay operator referring to a one sample delay).
=== Post-processor architecture ===
Given the rapid increase in complexity with longer targets, a post-processor architecture was proposed, firstly for EPRML.<ref>R. Wood, "[https://ieeexplore.ieee.org/document/281375
=== PRML with nonlinearities and signal-dependent noise ===
As data detectors became more sophisticated, it was found important to deal with any residual signal nonlinearities as well as pattern-dependent noise (noise tends to be largest when there is a magnetic transition between bits) including changes in noise-spectrum with data-pattern.
Although the PRML acronym is still occasionally used, the most advanced detectors today (as of 2017) are around a million times more complex (gate-count) than the first PRML channel and operate about 100 times the data-rate (up to 3 Gbit/s). The analog front-end typically includes [[Automatic_gain_control|AGC]], correction for the nonlinear read-element response, and a low-pass filter with control over the high-frequency boost or cut. Equalization is done after the A/D with a digital [[Finite_impulse_response|FIR]] equalizer. ([[Two-Dimensional Magnetic Recording|TDMR]] uses a 2-input, 1-output equalizer.) The detector uses the PDNP/NPML approach but the hard-decision Viterbi algorithm is replaced with a detector providing soft-outputs (additional information about the reliability of each bit). Such detectors using a 'soft Viterbi algorithm' or [[BCJR]] algorithm are essential in iteratively decoding [[LDPC]] codes used in modern HDDs. A single integrated circuit contains the entire R/W channel (including the iterative decoder) as well as all the disk control and interface functions. There are currently two suppliers: [[Broadcom]] and [[Marvell Technology Group|Marvell]].<ref>[https://www.marvell.com/storage/assets/Marvell_88i9422_Soleil_pb_FINAL.pdf Marvell 88i9422 Soleil SATA HDD Controller., Sept 2015]</ref>▼
== See also ==▼
== Modern electronics ==
▲Although the PRML acronym is still occasionally used,
▲== See also ==
* [[Maximum likelihood]]
* [[Viterbi algorithm]]
Line 54 ⟶ 59:
* [http://pcguide.com/ref/hdd/geom/dataPRML-c.html The PC Guide: PRML]
* [http://www.guzik.com/solutions_chapter9.asp Online Chapter "Introduction to PRML"], from Alex Taratorin's book ''Characterization of Magnetic Recording Systems: A Practical Approach''
[[Category:Computer storage devices]]
|