Permutation code: Difference between revisions

Content deleted Content added
Brightdan (talk | contribs)
Added other bounds
Citation bot (talk | contribs)
Added bibcode. Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 60/967
 
(11 intermediate revisions by 7 users not shown)
Line 1:
{{Short description|Class of error correction codes}}
{{Orphan|date=December 2024}}
 
'''Permutation codes''' are a family of [[Error correction model|error correction codecodes]]s that were introduced first by [[David Slepian|Slepian]] in 1965.<ref>{{Cite web |title=Codes on Euclidean Spheres, Volume 63 - 1st Edition |url=https://www.elsevier.com/books/codes-on-euclidean-spheres/ericson/978-0-444-50329-9 |access-date=2022-09-20 |website=www.elsevier.com}} Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 2001.</ref><ref>{{Cite journal |last=Slepian |first=D. |date=March 1965 |title=Permutation modulation |url=https://ieeexplore.ieee.org/document/1445610 |journal=Proceedings of the IEEE |volume=53 |issue=3 |pages=228–236 |doi=10.1109/PROC.1965.3680 |s2cid=124937273 |issn=1558-2256}}</ref> and have been widely studied both in [[Combinatorics]]<ref>{{Cite journal |last=Cameron |first=Peter J. |date=2010-02-01 |title=Permutation codes |url=https://doi.org/10.1016/j.ejc.2009.03.044 |journal=European Journal of Combinatorics |volume=31 |issue=2 |pages=482–490 |doi=10.1016/j.ejc.2009.03.044 |issn=0195-6698|doi-access=free }}</ref><ref>{{Cite journal |last=Tarnanen |first=H. |date=January 1999 |title=Upper Bounds on Permutation Codes via Linear Programming |url=http://dx.doi.org/10.1006/eujc.1998.0272 |journal=European Journal of Combinatorics |volume=20 |issue=1 |pages=101–114 |doi=10.1006/eujc.1998.0272 |issn=0195-6698|doi-access=free }} J. Combin., 20(1):101–114, 1999</ref> and [[Information theory]] due to their applications related to [[Flash memory]]<ref>{{Cite journal |last1=Han |first1=Hui |last2=Mu |first2=Jianjun |last3=He |first3=Yu-Cheng |last4=Jiao |first4=Xiaopeng |last5=Ma |first5=Wenping |date=April 2020 |title=Multi-Permutation Codes Correcting a Single Burst Unstable Deletions in Flash Memory |url=https://ieeexplore.ieee.org/document/8959303 |journal=IEEE Communications Letters |volume=24 |issue=4 |pages=720–724 |doi=10.1109/LCOMM.2020.2966619 |bibcode=2020IComL..24..720H |s2cid=214381288 |issn=1089-7798}}</ref> and [[Power-line communication]].<ref>{{Cite journal |last1=Chu |first1=Wensong |last2=Colbourn |first2=Charles J. |last3=Dukes |first3=Peter |date=May 2004 |title=Constructions for Permutation Codes in Powerline Communications |url=http://dx.doi.org/10.1023/b:desi.0000029212.52214.71 |journal=Designs, Codes and Cryptography |volume=32 |issue=1–3 |pages=51–64 |doi=10.1023/b:desi.0000029212.52214.71 |s2cid=18529905 |issn=0925-1022|url-access=subscription }}</ref>
 
== Definition and properties ==
A permutation code <math>C</math> is defined as a subset of the [[Symmetric group|Symmetric Group]] in <math>S_n</math> endowed with the usual [[Hamming distance]] between strings of length <math>n</math>. More precisely, if <math>\sigma, \tau</math> are permutations in <math>S_n</math>, then <math>d(\tau, \sigma) = |\left \{ i \in \{1, 2, ..., n\} : \sigma(i) \neq \tau(i) \right \}|</math>
d(\tau, \sigma) = |\left \{ i \in \{1, 2, ..., n\} : \sigma(i) \neq \tau(i) \right \}|</math>
 
The minimum distance of a permutation code <math>C</math> is defined to be the minimum positive integer <math>d_{min}</math> such that there exist <math>\sigma, \tau</math> <math>\in</math> <math>C</math>, distinct, such that <math>d(\sigma, \tau) = d_{min} </math>.
Line 17:
Let <math>D(n,k)= \{ \sigma \in S_n: d_H (\sigma, id)=k\}</math> with <math>|D(n,k)|=\tbinom{n}{k}D_k</math>, where <math>D_k</math> is the number of [[derangement]]s of order <math>k</math>.
 
The [[Gilbert–Varshamov bound|Gilbert-Varshamov bound]] is a very well known upper bound,<ref name=":0">{{Cite journal |last1=Gao |first1=Fei |last2=Yang |first2=Yiting |last3=Ge |first3=Gennian |date=May 2013 |title=An Improvement on the Gilbert–Varshamov Bound for Permutation Codes |url=http://dx.doi.org/10.1109/tit.2013.2237945 |journal=IEEE Transactions on Information Theory |volume=59 |issue=5 |pages=3059–3063 |doi=10.1109/tit.2013.2237945 |bibcode=2013ITIT...59.3059G |s2cid=13397633 |issn=0018-9448|url-access=subscription }}</ref> and so far outperforms other bounds for small values of <math>d</math>.
 
'''Theorem 1''': <math>\frac{n!}{\sum _{k=0} ^{d-1} |D(n,k)|} \leq M(n,d) \leq \frac{n!}{\sum _{k=0} ^{[\frac{d-1}{2}]} |D(n,k)|}
Line 28:
<math>\frac{n!}{M(n,4)} \geq 1 + \frac{(n+1)n(n-1)}{n(n-1)-(n-k^2)((k+1)^2-n)((k+2)(k-1)-n)}</math>.
 
For small values of <math>n</math> and <math>d</math>, researchers have developed various computer searching strategies to directly look for permutation codes with some prescribed [[automorphism]]s <ref>{{Cite journal |last1=Smith |first1=Derek H. |last2=Montemanni |first2=Roberto |date=2011-08-19 |title=A new table of permutation codes |url=http://dx.doi.org/10.1007/s10623-011-9551-8 |journal=Designs, Codes and Cryptography |volume=63 |issue=2 |pages=241–253 |doi=10.1007/s10623-011-9551-8 |s2cid=207115236 |issn=0925-1022|hdl=11380/1176210 |hdl-access=free }}</ref>
 
== Other Bounds ==
Line 34:
 
=== Gilbert-Varshamov Bound Improvement ===
An Improvement is done to the Gilbert-Varshamov bound already discussed above. Using the connection between permutation codes and independent sets in certain graphs one can improve the Gilbert–Varshamov bound [[Asymptote|asymptotically]] by a factor <math>\log(n)</math>, when the code length goes to infinity. <ref>F. Gao, Y. Yang and G. Ge, "An Improvement on the Gilbert–Varshamov Bound for Permutation Codes," in IEEE Transactions on Information Theory, vol. 59, no. 5, pp. 3059-3063, May 2013, doi: 10.1109/TIT.2013.2237945.</ref>
 
Let <math>G(n, d)</math> denote the subgraph induced by the neighbourhood of identity in <math>\Gamma (n, d)</math>, the [[Cayley graph]] <math>\Gamma (n, d) := \Gamma (S_n, S(n, d - 1))</math> and <math>S(n, k):= \bigcup_{i = 1}^k D(n, i)</math>.
Line 40:
Let <math>m(n, d)</math> denotes the maximum degree in <math>G(n, d)</math>
 
'''Theorem 3''': Let <math>m'(n, d) = m(n, d) + 1</math> and
 
<math>M_{IS}(n, d) := n!.\int_0^1 \frac{(1 - t)^{\frac{1}{m'(n, d)}}}{m'(n, d) + [\Delta(n, d) - m'(n, d)]t}dt</math>
Line 50:
The Gilbert-Varshamov bound is, <math>M(n, d) \ge M_{GV}(n, d) := \frac{n!}{1 + \Delta(n, d)}</math>
 
'''Theorem 4''': when <math>d</math> is fixed and <math>n</math> does to infinity, we have
 
<math>\frac{M_{IS}(n, d)}{M_{GV}(n, d)} = \Omega(\log(n))</math>
 
=== Lower bounds using linear codes ===
Using a <math>[n, k, d]_q</math> linear block code, one can prove that there exists a permutation code in the symmetric group of degree <math>n</math>, having minimum distance at least <math>d</math> and large cardinality.<ref name=":1">G. Micheli and A. Neri, "New Lower Bounds for Permutation Codes Using Linear Block Codes," in IEEE Transactions on Information Theory, vol. 66, no. 7, pp. 4019-4025, July 2020, doi: 10.1109/TIT.2019.2957354.</ref>. A lower bound for permutation codes that provides asymptotic improvements in certain regimes of length and distance of the permutation code<ref name=":1" /> is discussed below. For a given subset <math>\Kappa</math> of the symmetric group <math>S_n</math>, we denote by <math>M(\Kappa, d)</math> the maximum cardinality of a permutation code of minimum distance at least <math>d</math> entirely contained in <math>\Kappa</math>, i.e.
 
<math>M(\Kappa, d) = max\{|\Gamma| : \Gamma \subset \Kappa , d(\Gamma) \ge d\}</math>.
Line 75:
==References==
{{reflist}}
 
 
 
[[Category:Error detection and correction]]