Content deleted Content added
m Open access bot: hdl, url-access=subscription updated in citation with #oabot. |
Citation bot (talk | contribs) Added bibcode. Removed URL that duplicated identifier. Removed parameters. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 60/967 |
||
Line 2:
{{Orphan|date=December 2024}}
'''Permutation codes''' are a family of [[Error correction model|error correction codes]] that were introduced first by [[David Slepian|Slepian]] in 1965.<ref>{{Cite journal |last=Slepian |first=D. |date=March 1965 |title=Permutation modulation
== Definition and properties ==
Line 17:
Let <math>D(n,k)= \{ \sigma \in S_n: d_H (\sigma, id)=k\}</math> with <math>|D(n,k)|=\tbinom{n}{k}D_k</math>, where <math>D_k</math> is the number of [[derangement]]s of order <math>k</math>.
The [[Gilbert–Varshamov bound|Gilbert-Varshamov bound]] is a very well known upper bound,<ref name=":0">{{Cite journal |last1=Gao |first1=Fei |last2=Yang |first2=Yiting |last3=Ge |first3=Gennian |date=May 2013 |title=An Improvement on the Gilbert–Varshamov Bound for Permutation Codes |url=http://dx.doi.org/10.1109/tit.2013.2237945 |journal=IEEE Transactions on Information Theory |volume=59 |issue=5 |pages=3059–3063 |doi=10.1109/tit.2013.2237945 |bibcode=2013ITIT...59.3059G |s2cid=13397633 |issn=0018-9448|url-access=subscription }}</ref> and so far outperforms other bounds for small values of <math>d</math>.
'''Theorem 1''': <math>\frac{n!}{\sum _{k=0} ^{d-1} |D(n,k)|} \leq M(n,d) \leq \frac{n!}{\sum _{k=0} ^{[\frac{d-1}{2}]} |D(n,k)|}
|