Content deleted Content added
m Added an example of QAOA and provided a step by step instruction on implementing QAOA Tags: nowiki added Visual edit |
Citation bot (talk | contribs) Add: bibcode, article-number, issue, authors 1-1. Removed URL that duplicated identifier. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 183/967 |
||
(17 intermediate revisions by 12 users not shown) | |||
Line 35:
The quantum least-squares fitting algorithm<ref>{{cite journal|last1=Wiebe|first1=Nathan|last2=Braun|first2=Daniel|last3=Lloyd|first3=Seth|title=Quantum Algorithm for Data Fitting|journal=Physical Review Letters|date=2 August 2012|volume=109|issue=5|pages=050505|arxiv=1204.5242|doi=10.1103/PhysRevLett.109.050505|pmid=23006156|bibcode=2012PhRvL.109e0505W|s2cid=118439810 }}</ref> makes use of a version of Harrow, Hassidim, and Lloyd's [[quantum algorithm for linear systems of equations]] (HHL), and outputs the coefficients <math> \lambda_j </math> and the fit quality estimation <math> E </math>. It consists of three subroutines: an algorithm for performing a pseudo-[[matrix inversion|inverse]] operation, one routine for the fit quality estimation, and an algorithm for learning the fit parameters.
Because the quantum algorithm is mainly based on the HHL algorithm, it suggests an exponential improvement<ref>{{cite journal|last1=Montanaro|first1=Ashley|title=Quantum algorithms: an overview|journal=[[npj Quantum Information]] |date=12 January 2016|volume=2|
==Quantum semidefinite programming==
Line 54:
</math>
The best classical algorithm is not known to unconditionally run in [[polynomial time]]. The corresponding feasibility problem is known to either lie outside of the union of the complexity classes NP and co-NP, or in the intersection of NP and co-NP.<ref>{{Cite journal|url=https://doi.org/10.1007/BF02614433|doi = 10.1007/BF02614433|title = An exact duality theory for semidefinite programming and its complexity implications|year = 1997|last1 = Ramana|first1 = Motakuri V.|journal = Mathematical Programming|volume = 77|pages = 129–162|s2cid = 12886462|url-access = subscription}}</ref>
===The quantum algorithm===
Line 74:
==Quantum combinatorial optimization==
The [[combinatorial optimization]] problem is aimed at finding an optimal object from a [[finite set]] of objects. The problem can be phrased as a maximization of an [[objective function]] which is a sum of [[
:<math>
C(z) = \sum_{\alpha=1}^m C_\alpha(z)
Line 89:
# Defining a ''mixer Hamiltonian'' <math>H_M</math>.
# Defining the oracles <math>U_C(\gamma)= \exp(-\imath \gamma H_C)</math> and <math>U_M(\alpha)= \exp(-\imath \alpha H_M)</math>, with parameters <math>\gamma</math> and α.
# Repeated application of the oracles <math>U_C</math> and <math>U_M</math>, in the order: <math>U(\boldsymbol\gamma, \boldsymbol\alpha) = \coprod_{i=1}^N (U_C(\gamma_i) U_M(\alpha_i))</math>
# Preparing an initial state, that is a superposition of all possible states and apply <math>U(\boldsymbol\gamma, \boldsymbol\alpha)</math> to the state.
# Using classical methods to optimize the parameters <math>\boldsymbol\gamma, \boldsymbol\alpha</math> and measure the output state of the optimized circuit to obtain the approximate optimal solution to the cost Hamiltonian. An optimal solution will be one that maximizes the expectation value of the cost Hamiltonian <math>H_C</math>.
[[File:QAOAcircuit.png|thumb|457x457px|Sample QAOA ansatz for a three qubit circuit]]
=== QAOA for finding the minimum vertex cover of a graph ===
The goal here is to find
[[File:GraphforQAOA.png|thumb|220x220px|Sample graph to illustrate the minimum vertex cover problem.]]
Consider the graph given in the figure. It has four vertices and there are two minimum vertex cover for this graph: vertices 0 and 2,
<math>H_C = -0.25 Z_3 + 0.5 Z_0 + 0.5 Z_1 + 1.25 Z_2 + 0.75 (Z_0 Z_1 + Z_0 Z_2 + Z_2 Z_3 + Z_1 Z_2)</math>
<math>H_M = X_0 + X_1 + X_2 + X_3</math>
[[File:QAOAoutput.png|thumb|<nowiki>Output of QAOA implementation in Qiskit for minimum vertex cover problem. Note that the bit string |1010> is
[[File:QAOAcircuitforGraph.png|thumb|Qiskit implementation of QAOA for minimum vertex cover problem.]]
Implementing QAOA algorithm for this four qubit circuit with two layers of the ansatz in qiskit (see figure) and optimizing leads to a probability distribution for the states given in the figure. This shows that the states |0110⟩ and |1010⟩ have the highest probabilities of being measured, just as expected.
===
In principle the optimal value of
For example, it was shown that QAOA exhibits a strong dependence on the ratio of a problem's [[Constraint (mathematics)|constraint]] to [[Variable (mathematics)|variables]] (problem density) placing a limiting restriction on the algorithm's capacity to minimize a corresponding [[Loss function|objective function]].<ref name=":0">{{Cite journal|last1=Akshay|first1=V.|last2=Philathong|first2=H.|last3=Morales|first3=M. E. S.|last4=Biamonte|first4=J. D.|date=2020-03-05|title=Reachability Deficits in Quantum Approximate Optimization|journal=Physical Review Letters|volume=124|issue=9|pages=090504|doi=10.1103/PhysRevLett.124.090504|pmid=32202873|arxiv=1906.11259|bibcode=2020PhRvL.124i0504A|s2cid=195699685}}</ref>
It was soon recognized that a generalization of the QAOA process is essentially an alternating application of a continuous-time quantum walk on an underlying graph followed by a quality-dependent phase shift applied to each solution state. This generalized QAOA was termed as QWOA (Quantum Walk-based Optimisation Algorithm).<ref>{{Cite journal|last1=Marsh|first1=S.|last2=Wang|first2=J. B.|date=2020-06-08|title=Combinatorial optimization via highly efficient quantum walks|journal=Physical Review Research|volume=2|issue=2|pages=023302|doi=10.1103/PhysRevResearch.2.023302|arxiv=1912.07353 |bibcode=2020PhRvR...2b3302M|s2cid=216080740}}</ref>
In the paper ''How many qubits are needed for quantum computational supremacy'' submitted to arXiv,<ref>{{Cite journal|last1=Dalzell|first1=Alexander M.|last2=Harrow|first2=Aram W.|last3=Koh|first3=Dax Enshan|last4=La Placa|first4=Rolando L.|date=2020-05-11|title=How many qubits are needed for quantum computational supremacy?|journal=Quantum|volume=4|
A rigorous comparison of QAOA with classical algorithms can give estimates on depth <math> p </math> and number of qubits required for quantum advantage. A study of QAOA and [[Maximum cut|MaxCut]] algorithm shows that <math>p>11</math> is required for scalable advantage.<ref name="Lykov Wurtz Poole Saffman p. ">{{cite journal | last1=Lykov | first1=Danylo | last2=Wurtz | first2=Jonathan | last3=Poole | first3=Cody | last4=Saffman | first4=Mark | last5=Noel | first5=Tom | last6=Alexeev | first6=Yuri | title=Sampling frequency thresholds for the quantum advantage of the quantum approximate optimization algorithm | journal=npj Quantum Information | year=2023 | volume=9 |
=== Variations of QAOA ===
Several variations to the basic structure of QAOA have been proposed,<ref>{{Cite journal |last1=Blekos |first1=Kostas |last2=Brand |first2=Dean |last3=Ceschini |first3=Andrea |last4=Chou |first4=Chiao-Hui |last5=Li |first5=Rui-Hao |last6=Pandya |first6=Komal |last7=Summer |first7=Alessandro |date=June 2024 |title=A Review on Quantum Approximate Optimization Algorithm and its Variants |journal=Physics Reports |volume=1068 |pages=1–66 |doi=10.1016/j.physrep.2024.03.002|arxiv=2306.09198 |bibcode=2024PhR..1068....1B }}</ref> which include variations to the ansatz of the basic algorithm. The choice of ansatz typically depends on the problem type, such as combinatorial problems represented as graphs, or problems strongly influenced by hardware design. However, ansatz design must balance specificity and generality to avoid overfitting and maintain applicability to a wide range of problems. For this reason, designing optimal ansatze for QAOA is an extensively researched and widely investigated topic. Some of the proposed variants are:
# Multi-angle QAOA<ref>{{Cite journal |last1=Herrman |first1=Rebekah |last2=Lotshaw |first2=Phillip C. |last3=Ostrowski |first3=James |last4=Humble |first4=Travis S. |last5=Siopsis |first5=George |date=2022-04-26 |title=Multi-angle quantum approximate optimization algorithm |journal=Scientific Reports |language=en |volume=12 |issue=1 |page=6781 |doi=10.1038/s41598-022-10555-8 |issn=2045-2322 |pmc=9043219 |pmid=35474081|arxiv=2109.11455 |bibcode=2022NatSR..12.6781H }}</ref>
# Expressive QAOA (XQAOA)<ref>{{Cite journal |last1=Vijendran |first1=V |last2=Das |first2=Aritra |last3=Koh |first3=Dax Enshan |last4=Assad |first4=Syed M |last5=Lam |first5=Ping Koy |date=2024-04-01 |title=An expressive ansatz for low-depth quantum approximate optimisation |url=https://iopscience.iop.org/article/10.1088/2058-9565/ad200a |journal=Quantum Science and Technology |volume=9 |issue=2 |pages=025010 |doi=10.1088/2058-9565/ad200a |issn=2058-9565|arxiv=2302.04479 |bibcode=2024QS&T....9b5010V }}</ref>
# QAOA+<ref>{{Cite book |last1=Chalupnik |first1=Michelle |last2=Melo |first2=Hans |last3=Alexeev |first3=Yuri |last4=Galda |first4=Alexey |chapter=Augmenting QAOA Ansatz with Multiparameter Problem-Independent Layer |date=September 2022 |title=2022 IEEE International Conference on Quantum Computing and Engineering (QCE) |publisher=IEEE |pages=97–103 |doi=10.1109/QCE53715.2022.00028 |arxiv=2205.01192 |isbn=978-1-6654-9113-6}}</ref>
# Digitised counteradiabatic QAOA<ref>{{Cite journal |last1=Chandarana |first1=P. |last2=Hegade |first2=N. N. |last3=Paul |first3=K. |last4=Albarrán-Arriagada |first4=F. |last5=Solano |first5=E. |last6=del Campo |first6=A. |last7=Chen |first7=Xi |date=2022-02-22 |title=Digitized-counterdiabatic quantum approximate optimization algorithm |url=https://link.aps.org/doi/10.1103/PhysRevResearch.4.013141 |journal=Physical Review Research |language=en |volume=4 |issue=1 |page=013141 |doi=10.1103/PhysRevResearch.4.013141 |arxiv=2107.02789 |bibcode=2022PhRvR...4a3141C |issn=2643-1564}}</ref>
# Quantum alternating operator ansatz<ref>{{Cite journal |last1=Hadfield |first1=Stuart |last2=Wang |first2=Zhihui |last3=O'Gorman |first3=Bryan |last4=Rieffel |first4=Eleanor |last5=Venturelli |first5=Davide |last6=Biswas |first6=Rupak |date=2019-02-12 |title=From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz |journal=Algorithms |language=en |volume=12 |issue=2 |pages=34 |doi=10.3390/a12020034 |doi-access=free |issn=1999-4893|arxiv=1709.03489 }}</ref>,which allows for constrains on the optimization problem etc.
Another variation of QAOA focuses on techniques for parameter optimization, which aims at selecting the optimal set of initial parameters for a given problem and avoiding barren plateaus, which represent parameters leading to eigenstates which correspond to plateaus in the energy landscape of the cost Hamiltonian.
Finally, there has been significant research interest in leveraging specific hardware to enhance the performance of QAOA across various platforms, such as trapped ion, neutral atoms, superconducting qubits, and photonic quantum computers. The goals of these approaches include overcoming hardware connectivity limitations and mitigating noise-related issues to broaden the applicability of QAOA to a wide range of combinatorial optimization problems.
==QAOA algorithm Qiskit implementation==
[[File:QAOA quantum circuit.png|thumb|QAOA quantum circuit]]
The quantum circuit shown here is from a simple example of how the QAOA algorithm can be implemented in Python<ref>{{cite web |url=https://learning.quantum.ibm.com/tutorial/quantum-approximate-optimization-algorithm |title=Solve utility-scale quantum optimization problems |access-date=2025-02-24}}</ref> using [[Qiskit]], an open-source quantum computing software development framework by IBM.
== See also ==
*[[Adiabatic quantum computation]]
*[[Quantum annealing]]
{{clear}}
== References ==
{{reflist}}
==External links==
* [https://short.classiq.io/qaoa_knapsack Implementation of the QAOA algorithm for the knapsack problem with Classiq]
{{Quantum information}}
|