Content deleted Content added
mNo edit summary Tags: references removed 2017 wikitext editor |
Citation bot (talk | contribs) Added hdl. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 659/967 |
||
(23 intermediate revisions by 14 users not shown) | |||
Line 1:
{{Short description|Process in algebra}}
{{Refimprove|date=June 2021}}
In [[multilinear algebra]], a '''tensor decomposition''' <ref>{{Cite journal |last=Sidiropoulos |first=Nicholas D. |last2=De Lathauwer |first2=Lieven |last3=Fu |first3=Xiao |last4=Huang |first4=Kejun |last5=Papalexakis |first5=Evangelos E. |last6=Faloutsos |first6=Christos |date=2017-07-01 |title=Tensor Decomposition for Signal Processing and Machine Learning |url=http://ieeexplore.ieee.org/document/7891546/ |journal=IEEE Transactions on Signal Processing |volume=65 |issue=13 |pages=3551–3582 |doi=10.1109/TSP.2017.2690524 |issn=1053-587X}}</ref> <ref>{{Cite journal |last=Kolda |first=Tamara G. |last2=Bader |first2=Brett W. |date=2009-08-06 |title=Tensor Decompositions and Applications |url=http://epubs.siam.org/doi/10.1137/07070111X |journal=SIAM Review |language=en |volume=51 |issue=3 |pages=455–500 |doi=10.1137/07070111X |issn=0036-1445}}</ref> is any scheme for expressing a [[tensor]] as a sequence of elementary operations acting on other, often simpler tensors. Many tensor decompositions generalize some [[matrix decomposition]]s.<ref>{{Cite journal|date=2013-05-01|title=General tensor decomposition, moment matrices and applications|url=https://www.sciencedirect.com/science/article/pii/S0747717112001290|journal=Journal of Symbolic Computation|language=en|volume=52|pages=51–71|doi=10.1016/j.jsc.2012.05.012|issn=0747-7171|arxiv=1105.1229|last1=Bernardi |first1=A. |last2=Brachat |first2=J. |last3=Comon |first3=P. |last4=Mourrain |first4=B. |s2cid=14181289 }}</ref>▼
▲In [[multilinear algebra]], a '''tensor decomposition''' is
Tensors are generalizations of matrices to higher dimensions and can consequently be treated as multidimensional fields <ref>{{Cite journal |last=Rabanser |first=Stephan |last2=Shchur |first2=Oleksandr |last3=Günnemann |first3=Stephan |date=2017 |title=Introduction to Tensor Decompositions and their Applications in Machine Learning |url=https://arxiv.org/abs/1711.10781 |doi=10.48550/ARXIV.1711.10781}}</ref>.▼
▲[[Tensors]] are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.<ref name="VasilescuDSP"/><ref>{{Cite
The main tensor decompositions are:
* [[Tensor rank decomposition]];<ref>{{Cite
* [[Higher-order singular value decomposition]];<ref >{{Cite book
|first1 = M.A.O.
|last1 = Vasilescu
|first2 = D.
|last2 = Terzopoulos
|url = http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title = Multilinear Analysis of Image Ensembles: TensorFaces
|series = Lecture Notes in Computer Science; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark)
|publisher = Springer, Berlin, Heidelberg
|volume = 2350
|doi = 10.1007/3-540-47969-4_30
|isbn = 978-3-540-43745-1
|year = 2002
|archive-date = 2022-12-29
|access-date = 2023-03-19
|archive-url = https://web.archive.org/web/20221229090931/http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|url-status = dead
}}</ref>
* [[Tucker decomposition]];
* [[matrix product state]]s, and operators or tensor trains;
* [[Online Tensor Decompositions]]<ref>{{
* [[hierarchical Tucker decomposition]];<ref name=Vasilescu2019>{{cite conference |first1=M.A.O.|last1=Vasilescu|first2=E.|last2=Kim|date=2019|title=Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors|conference=In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for Emerging Data Science Challenges |eprint=1911.04180 }}</ref>
* [[block term decomposition]]<ref>{{
==
This section introduces basic notations and operations that are widely used in the field
{| class="wikitable"
Line 20 ⟶ 38:
! Symbols!! Definition
|-
| <math>{
|-
| <math>{\
|-
| <math>{
|-
| <math>\times_m</math> || mode-m product
|}
==Introduction==▼
A multi-view graph with K views is a collection of K matrices <math>{X_1,X_2.....X_K}</math> with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.▼
▲==Introduction==
▲A multi-
==References==
{{Reflist}}
|