Content deleted Content added
Citation bot (talk | contribs) Added hdl. Removed URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 659/967 |
|||
(18 intermediate revisions by 12 users not shown) | |||
Line 1:
{{Short description|Process in algebra}}
{{Refimprove|date=June 2021}}
In [[multilinear algebra]], a '''tensor decomposition'''<ref name=VasilescuDSP>{{cite journal|first1=MAO|last1=Vasilescu|first2=D|last2=Terzopoulos|title=Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]|work=IEEE Signal Processing Magazine|volume=24|issue=(6)|pages=118-123}}</ref><ref>{{Cite journal |last=Kolda |first=Tamara G. |last2=Bader |first2=Brett W. |date=2009-08-06 |title=Tensor Decompositions and Applications |url=http://epubs.siam.org/doi/10.1137/07070111X |journal=SIAM Review |language=en |volume=51 |issue=3 |pages=455–500 |doi=10.1137/07070111X |issn=0036-1445}}</ref> <ref>{{Cite journal |last=Sidiropoulos |first=Nicholas D. |last2=De Lathauwer |first2=Lieven |last3=Fu |first3=Xiao |last4=Huang |first4=Kejun |last5=Papalexakis |first5=Evangelos E. |last6=Faloutsos |first6=Christos |date=2017-07-01 |title=Tensor Decomposition for Signal Processing and Machine Learning |url=http://ieeexplore.ieee.org/document/7891546/ |journal=IEEE Transactions on Signal Processing |volume=65 |issue=13 |pages=3551–3582 |doi=10.1109/TSP.2017.2690524 |issn=1053-587X}}</ref> is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors. Many tensor decompositions generalize some [[matrix decomposition]]s.<ref>{{Cite journal|date=2013-05-01|title=General tensor decomposition, moment matrices and applications|url=https://www.sciencedirect.com/science/article/pii/S0747717112001290|journal=Journal of Symbolic Computation|language=en|volume=52|pages=51–71|doi=10.1016/j.jsc.2012.05.012|issn=0747-7171|arxiv=1105.1229|last1=Bernardi |first1=A. |last2=Brachat |first2=J. |last3=Comon |first3=P. |last4=Mourrain |first4=B. |s2cid=14181289 }}</ref>▼
▲In [[multilinear algebra]], a '''tensor decomposition''' is any scheme for expressing a [[Tensor (machine learning)|"data tensor"]] (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.<ref name=VasilescuDSP>{{cite journal|first1=MAO|last1=Vasilescu|first2=D|last2=Terzopoulos|title=Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]|
[[Tensors]] are generalizations of matrices to higher dimensions and can consequently be treated as multidimensional fields <ref name="VasilescuDSP"/><ref>{{Cite journal |last=Rabanser |first=Stephan |last2=Shchur |first2=Oleksandr |last3=Günnemann |first3=Stephan |date=2017 |title=Introduction to Tensor Decompositions and their Applications in Machine Learning |url=https://arxiv.org/abs/1711.10781 |doi=10.48550/ARXIV.1711.10781}}</ref>.▼
▲[[Tensors]] are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields
The main tensor decompositions are:
* [[Tensor rank decomposition]];<ref>{{Cite
* [[Higher-order singular value decomposition]];<ref >{{Cite
|first1 = M.A.O. |last1 = Vasilescu |first2 = D.
|last2 = Terzopoulos
|url = http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title = Multilinear Analysis of Image Ensembles: TensorFaces
|series = Lecture Notes in Computer Science; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark) |publisher = Springer, Berlin, Heidelberg
|volume = 2350
|doi = 10.1007/3-540-47969-4_30
|isbn = 978-3-540-43745-1
|year = 2002
|archive-date = 2022-12-29
}}</ref>;▼
|access-date = 2023-03-19
|archive-url = https://web.archive.org/web/20221229090931/http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|url-status = dead
* [[Tucker decomposition]];
* [[matrix product state]]s, and operators or tensor trains;
* [[Online Tensor Decompositions]]<ref>{{Cite
* [[hierarchical Tucker decomposition]];<ref name=Vasilescu2019>{{
* [[block term decomposition]]<ref>{{Cite journal |last=De Lathauwer|first=Lieven |title=Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness |url=http://epubs.siam.org/doi/10.1137/070690729 |journal=SIAM Journal on Matrix Analysis and Applications |year=2008 |volume=30 |issue=3 |pages=1033–1066 |language=en |doi=10.1137/070690729|url-access=subscription }}</ref><ref>{{citation|first1=M.A.O.|last1=Vasilescu|first2=E.|last2=Kim|first3=X.S.|last3=Zeng|title=CausalX: Causal eXplanations and Block Multilinear Factor Analysis |work=Conference Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR 2020)|year=2021 |pages=10736–10743 |doi=10.1109/ICPR48806.2021.9412780 |arxiv=2102.12853 |isbn=978-1-7281-8808-9 |s2cid=232046205 }}</ref><ref name="Vasilescu2019" /><ref>{{cite
==
This section introduces basic notations and operations that are widely used in the field
{| class="wikitable"
Line 41 ⟶ 49:
==Introduction==
A multi-way graph with K perspectives is a collection of K matrices <math>{X_1,X_2.....X_K}</math> with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.
==References==
{{Reflist}}
|