Content deleted Content added
→Continuous-time: Linking. |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 30:
[[Long short-term memory]] (LSTM) networks were invented by [[Sepp Hochreiter|Hochreiter]] and [[Jürgen Schmidhuber|Schmidhuber]] in 1995 and set accuracy records in multiple applications domains.<ref>{{Cite Q|Q98967430}}</ref><ref name="lstm">{{Cite journal |last1=Hochreiter |first1=Sepp |author-link=Sepp Hochreiter |last2=Schmidhuber |first2=Jürgen |date=1997-11-01 |title=Long Short-Term Memory |journal=Neural Computation |volume=9 |issue=8 |pages=1735–1780 |doi=10.1162/neco.1997.9.8.1735|pmid=9377276 |s2cid=1915014 }}</ref> It became the default choice for RNN architecture.
[[Bidirectional recurrent neural networks]] (BRNN)
Around 2006, bidirectional LSTM started to revolutionize [[speech recognition]], outperforming traditional models in certain speech applications.<ref>{{Cite journal |last1=Graves |first1=Alex |last2=Schmidhuber |first2=Jürgen |date=2005-07-01 |title=Framewise phoneme classification with bidirectional LSTM and other neural network architectures |journal=Neural Networks |series=IJCNN 2005 |volume=18 |issue=5 |pages=602–610 |citeseerx=10.1.1.331.5800 |doi=10.1016/j.neunet.2005.06.042 |pmid=16112549 |s2cid=1856462}}</ref><ref name="fernandez2007keyword">{{Cite conference |last1=Fernández |first1=Santiago |last2=Graves |first2=Alex |last3=Schmidhuber |first3=Jürgen |year=2007 |title=An Application of Recurrent Neural Networks to Discriminative Keyword Spotting |url=http://dl.acm.org/citation.cfm?id=1778066.1778092 |book-title=Proceedings of the 17th International Conference on Artificial Neural Networks |series=ICANN'07 |___location=Berlin, Heidelberg |publisher=Springer-Verlag |pages=220–229 |isbn=978-3-540-74693-5 }}</ref> They also improved large-vocabulary speech recognition<ref name="sak2014" /><ref name="liwu2015" /> and [[text-to-speech]] synthesis<ref name="fan2015">{{cite conference |last1=Fan |first1=Bo |last2=Wang |first2=Lijuan |last3=Soong |first3=Frank K. |last4=Xie |first4=Lei |title=Photo-Real Talking Head with Deep Bidirectional LSTM |chapter-url= |editor= |book-title=Proceedings of ICASSP 2015 IEEE International Conference on Acoustics, Speech and Signal Processing |doi=10.1109/ICASSP.2015.7178899 |date=2015 |isbn=978-1-4673-6997-8 |pages=4884–8 }}</ref> and was used in [[Google Voice Search|Google voice search]], and dictation on [[Android (operating system)|Android devices]].<ref name="sak2015">{{Cite web |url=http://googleresearch.blogspot.ch/2015/09/google-voice-search-faster-and-more.html |title=Google voice search: faster and more accurate |last1=Sak |first1=Haşim |last2=Senior |first2=Andrew |date=September 2015 |last3=Rao |first3=Kanishka |last4=Beaufays |first4=Françoise |last5=Schalkwyk |first5=Johan}}</ref> They broke records for improved [[machine translation]],<ref name="sutskever2014">{{Cite journal |last1=Sutskever |first1=Ilya |last2=Vinyals |first2=Oriol |last3=Le |first3=Quoc V. |year=2014 |title=Sequence to Sequence Learning with Neural Networks |url=https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf |journal=Electronic Proceedings of the Neural Information Processing Systems Conference |volume=27 |page=5346 |arxiv=1409.3215 |bibcode=2014arXiv1409.3215S }}</ref> [[Language Modeling|language modeling]]<ref name="vinyals2016">{{cite arXiv |last1=Jozefowicz |first1=Rafal |last2=Vinyals |first2=Oriol |last3=Schuster |first3=Mike |last4=Shazeer |first4=Noam |last5=Wu |first5=Yonghui |date=2016-02-07 |title=Exploring the Limits of Language Modeling |eprint=1602.02410 |class=cs.CL}}</ref> and Multilingual Language Processing.<ref name="gillick2015">{{cite arXiv |last1=Gillick |first1=Dan |last2=Brunk |first2=Cliff |last3=Vinyals |first3=Oriol |last4=Subramanya |first4=Amarnag |date=2015-11-30 |title=Multilingual Language Processing From Bytes |eprint=1512.00103 |class=cs.CL}}</ref> Also, LSTM combined with [[convolutional neural network]]s (CNNs) improved [[automatic image captioning]].<ref name="vinyals2015">{{cite arXiv |last1=Vinyals |first1=Oriol |last2=Toshev |first2=Alexander |last3=Bengio |first3=Samy |last4=Erhan |first4=Dumitru |date=2014-11-17 |title=Show and Tell: A Neural Image Caption Generator |eprint=1411.4555 |class=cs.CV }}</ref>
Line 270:
===Multiple timescales model===
A multiple timescales recurrent neural network (MTRNN) is a neural-based computational model that can simulate the functional hierarchy of the brain through self-organization depending on the spatial connection between neurons and on distinct types of neuron activities, each with distinct time properties.<ref>{{Cite journal |last1=Yamashita |first1=Yuichi |last2=Tani |first2=Jun |date=2008-11-07 |title=Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment |journal=PLOS Computational Biology |volume=4 |issue=11 |pages=e1000220 |doi=10.1371/journal.pcbi.1000220 |pmc=2570613 |pmid=18989398 |bibcode=2008PLSCB...4E0220Y |doi-access=free }}</ref><ref>{{Cite journal |last1=Alnajjar |first1=Fady |last2=Yamashita |first2=Yuichi |last3=Tani |first3=Jun |year=2013 |title=The hierarchical and functional connectivity of higher-order cognitive mechanisms: neurorobotic model to investigate the stability and flexibility of working memory |journal=Frontiers in Neurorobotics |volume=7 |page=2 |doi=10.3389/fnbot.2013.00002 |pmc=3575058 |pmid=23423881|doi-access=free }}</ref> With such varied neuronal activities, continuous sequences of any set of behaviors are segmented into reusable primitives, which in turn are flexibly integrated into diverse sequential behaviors. The biological approval of such a type of hierarchy was discussed in the [[memory-prediction framework|memory-prediction]] theory of brain function by [[Jeff Hawkins|Hawkins]] in his book ''[[On Intelligence]]''.{{Citation needed |date=June 2017}} Such a hierarchy also agrees with theories of memory posited by philosopher [[Henri Bergson]], which have been incorporated into an MTRNN model.<ref name="auto1"/><ref>{{Cite web | url=http://jnns.org/conference/2018/JNNS2018_Technical_Programs.pdf | title=
===Memristive networks===
|