Content deleted Content added
m unpiped links using script |
m →Types of operating system schedulers: Corrected Signal Redirect Tags: Mobile edit Mobile app edit Android app edit App section source |
||
(19 intermediate revisions by 9 users not shown) | |||
Line 1:
{{Short description|Method by which work is assigned}}
{{About|scheduling of computing resources|networks|Network scheduler|other uses|Scheduling (disambiguation)}}
In [[computing]], '''scheduling''' is the action of assigning
The scheduling activity is carried out by a mechanism called a '''scheduler'''. Schedulers are often designed so as to keep all computer resources busy (as in [[load balancing (computing)|load balancing]]), allow multiple users to share system resources effectively, or to achieve a target [[quality-of-service]].
Line 111 ⟶ 112:
===={{Anchor|SHORT-TERM}}Short-term scheduling====
The ''short-term scheduler'' (also known as the ''CPU scheduler'') decides which of the ready, in-memory processes is to be executed (allocated a CPU) after a clock [[interrupt]], an I/O interrupt, an operating [[system call]] or another form of [[Signal
A preemptive scheduler relies upon a [[programmable interval timer]] which invokes an [[interrupt handler]] that runs in [[kernel mode]] and implements the scheduling function.
Line 258 ⟶ 259:
===Linux===
{{See also|Linux kernel#Scheduling}}
==== Linux 1.2 ====
Linux 1.2 used a [[round-robin scheduling]] policy.<ref name=":0">{{Cite web |last=Jones |first=M. |date=2018-09-18 |orig-date=first published on 2009-12-14 |title=Inside the Linux 2.6 Completely Fair Scheduler |url=https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ |access-date=2024-02-07 |website=developer.ibm.com}}</ref>
Line 289 ⟶ 290:
==== Linux 6.6 ====
In 2023, Peter Zijlstra proposed replacing CFS with an [[earliest eligible virtual deadline first scheduling]] (EEVDF) process scheduler.<ref>{{Cite web |title=EEVDF Scheduler May Be Ready For Landing With Linux 6.6 |url=https://www.phoronix.com/news/Linux-6.6-EEVDF-Likely |access-date=2023-08-31 |website=[[Phoronix]] |language=en}}</ref><ref>{{Cite web |title=EEVDF Scheduler Merged For Linux 6.6, Intel Hybrid Cluster Scheduling Re-Introduced |url=https://www.phoronix.com/news/Linux-6.6-EEVDF-Merged |access-date=2024-02-07 |website=www.phoronix.com |language=en}}</ref> The aim was to remove the need for CFS ''latency nice'' patches.<ref>{{Cite web |title=An EEVDF CPU scheduler for Linux [LWN.net] |url=https://lwn.net/Articles/925371/ |access-date=2023-08-31 |website=[[LWN.net]]}}</ref>
==== Linux 6.12 ====
Linux 6.12 added support for [[User space and kernel space|userspace]] scheduler extensions, also known as sched_ext.<ref>{{Cite web |title=Sched_ext Merged For Linux 6.12 - Scheduling Policies As BPF Programs |url=https://www.phoronix.com/news/Linux-6.12-Lands-sched-ext |access-date=2025-02-10 |website=www.phoronix.com |language=en}}</ref> These schedulers can be installed and replace the default scheduler.<ref>{{Cite web |title=Pluggable CPU schedulers - openSUSE Wiki |url=https://en.opensuse.org/Pluggable_CPU_schedulers |access-date=2025-02-10 |website=en.opensuse.org}}</ref>
===FreeBSD===
Line 294 ⟶ 298:
===NetBSD===
[[NetBSD]] uses a multilevel feedback queue with priorities ranging from 0–223. 0–63 are reserved for time-shared threads (default, SCHED_OTHER policy), 64–95 for user threads which entered [[kernel space]],
===Solaris===
Line 322 ⟶ 326:
| [[O(1) scheduler]]
|-
| Linux kernel
| {{Yes}}
| [[Completely Fair Scheduler]]
|