Content deleted Content added
→See also: added reference to quantum information |
Randy Kryn (talk | contribs) uppercase per direct link (Grand Unified Theory), italics |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1:
{{Short description|Emerging theory of quantum information}}
{{Infobox
| title = Quantum Memory Matrix
Line 22 ⟶ 20:
==Historical background==
* '''2024 (November).''' Publication of ''The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox'' lays out the Planck-scale “memory-cell” hypothesis, introduces local imprint operators, and proposes a unitary resolution of the [[Black hole information paradox]].<ref name="Neukart2024">{{cite journal |last1=Neukart |first1=Florian |last2=Brasher |first2=Reuben |last3=Marx |first3=Eike |title=The Quantum Memory Matrix: A Unified Framework for the Black Hole Information Paradox |journal=Entropy |volume=26 |issue=12 |pages=1039 |year=2024 |doi=10.3390/e26121039 |
* '''2024 (December).''' An IBM Quantum experiment demonstrates reversible imprinting and retrieval.<ref name="Arxiv2502">{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2502.15766 |title=Reversible Imprinting and Retrieval of Quantum Information: Experimental Verification of the QMM Hypothesis |date=2025 |class=physics.gen-ph }}</ref>
* '''2025 (January).''' ''Annals of Physics'' publishes the '''Geometry-Information Duality (GID)''' paper, providing the theoretical foundation that links local imprint entropy to space-time curvature and unifies QMM with black-hole thermodynamics.<ref name="GID">{{cite journal |last=Neukart |first=Florian |title=Geometry–Information Duality and Black-Hole Entropy |journal=Annals of Physics |year=2025 |volume=475 |pages=125392 |doi=10.1016/j.aop.2025.125392 |doi-broken-date=22 July 2025 |url=https://www.sciencedirect.com/science/article/pii/S0003491625001253 |doi-access=free }}</ref>
* '''2025 (February).''' Two companion preprints extend QMM to electromagnetism<ref>{{cite journal |last=Neukart |first=F. |title=Planck-Scale Electromagnetism in the Quantum Memory Matrix: A Discrete Approach to Unitarity |journal=Preprints |year=2025 |number=2025030551 |doi=10.20944/preprints202503.0551.v1 |doi-access=free |url=https://www.preprints.org/manuscript/202503.0551/v1}}</ref><ref>{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2502.15766v2 |title=Integrating Electromagnetic Interactions into the QMM Framework |date=2025 |class=physics.gen-ph }}</ref> and to the strong and weak sectors.<ref name="Neukart2025SW">{{cite journal |last=Neukart |first=F. |title=Extending the Quantum Memory Matrix Framework to the Strong and Weak Interactions |journal=Entropy |volume=27 |issue=2 |pages=153 |year=2025 |doi=10.3390/e27020153 |pmid=40003150 |pmc=11854125 |doi-access=free }}</ref>
* '''2025 (April).''' A study applies the framework to cosmological structure formation and PBH production.<ref name="PBH">{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2506.13816 |title=Information Wells and the Emergence of Primordial Black Holes in a Cyclic Quantum Universe |date=2025 |class=physics.gen-ph }}</ref>
Line 32 ⟶ 30:
===Lattice structure===
* '''Cells and topology.''' QMM discretizes space-time as a four-dimensional cubic lattice <math>\mathcal{X}\simeq\mathbb{Z}^4</math> with spacing <math>a\approx\ell_P</math>. Each site ''x'' hosts a finite Hilbert space <math>\mathcal{H}_x\cong\mathbb{C}^d</math>, so the global kinematic space factorizes into <math>\mathcal{H}_{\text{QMM}}=\bigotimes_{x\in\mathcal{X}}\mathcal{H}_x</math>. Local imprint generators commute at space-like separation, ensuring microcausality; information spreads through a nearest-neighbor Hamiltonian <math>\hat H=\sum_{\langle x,y\rangle}J\,\hat\sigma_x\hat\sigma_y+\sum_x\lambda\,\hat\phi(x)\otimes\hat\sigma_x</math>.
* '''Emergent metric.''' Lattice connectivity is encoded in an adjacency matrix <math>A_{xy}</math> (equal to 1 for nearest neighbors). On coarse scales the block-averaged metric is
::<math>g_{\mu\nu}(X)=\alpha\sum_{x,y\in\mathcal{B}(X)}A_{xy}(\Delta x)_{\mu}(\Delta x)_{\nu}</math> where <math>\mathcal{B}(X)</math> is an <math>L^{4}</math> block centered on macroscopic coordinate ''X'' and α is a normalization constant.<ref name="Neukart2024" />
Line 66 ⟶ 63:
The imprint map factorizes into a data qubit and two memory qubits: <math>\hat I=\mathrm{CNOT}_{12}\mathrm{CNOT}_{13}</math>. After idle time ''τ'', logical recovery
:<math>\hat R=\hat I^{\dagger}e^{-iH_{\text{noise}}\tau}\hat I</math>
raises fidelity to <math>F_{\text{logical}}\approx0.94</math>, 32
===Information-well cosmology===
Line 102 ⟶ 99:
A dedicated hardware study on IBM’s 127-qubit '''ibm_kyiv''' and '''ibm_brisbane''' devices implemented five imprint–retrieval circuits that scale from a minimal three-qubit cell to a dual five-qubit cycle.<ref>{{cite arXiv |last1=Neukart |first1=Florian |last2=Marx |first2=Eike |last3=Vinokur |first3=Valerii |eprint=2502.15766v2 |title=Reversible Imprinting and Retrieval of Quantum Information: Experimental Verification of the Quantum Memory Matrix Hypothesis |date=2025 |class=physics.gen-ph }}</ref>
* The baseline three-qubit cycle reached a retrieval fidelity of <math>F_{\text{retr}} = 0.732 \pm 0.012</math>.
* Adding a second, independent memory cell preserved fidelity within 3
* Phase-evolution and controlled-error runs confirmed reversibility: deliberate phase errors (δ = π⁄8) were corrected to <math>F = 0.684 \pm 0.014</math>, while control runs without injected noise restored the baseline value.
Mutual-information analyses and Pearson correlations between field and output registers excluded classical leakage, establishing unitary, local storage and recovery of quantum information as predicted by QMM.
Line 109 ⟶ 106:
A follow-up experiment integrated a '''single-layer QMM dressing''' ahead of a length-3 repetition code on the same hardware.<ref>{{cite journal |last=Neukart |first=Florian |title=QMM-Enhanced Error Correction: Demonstrating Reversible Imprinting and Retrieval for Robust Quantum Computation |journal=Advanced Quantum Technologies |volume=?? |year=2025 |article-number=e2500262 |doi=10.1002/qute.202500262 |url=https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202500262|url-access=subscription }}</ref>
* The hybrid “QMM + Rep-3” block achieved a logical fidelity of <math>F_{\text{logical}} = 0.941 \pm 0.004</math>, a '''32 % improvement''' over the bare repetition code at identical two-qubit-gate cost.
* Noise-calibrated simulations showed that stacking three QMM layers brings the logical error rate to within 20
Because the imprint layer is fully unitary and measurement-free, it operates as a lightweight "booster" compatible with architectures where rapid stabilizer read-out is impractical, providing empirical support for the broader claim that space-time may function as a distributed quantum memory.
Line 116 ⟶ 113:
* '''μ-distortions and PTA background''' – Spectral CMB distortions and a nanohertz gravitational-wave background from imprint-seeded PBHs.<ref name="PBH" />
* '''Small CP-phase shifts''' – <math>\mathcal{O}(10^{-4})</math> corrections to CKM/PMNS phases from imprint loops.<ref name="Neukart2025SW" />
* '''LISA-band gravitational waves''' – A predicted stochastic signal at 0.1–1
* '''Ultra-high-energy cosmic rays''' – Spectral suppression above 5 × 10<sup>19</sup> eV due to the Planck-cell cutoff.<ref name="Neukart2024" />
Line 122 ⟶ 119:
Mainstream coverage (2024–25) includes:
* ''
* A summary and commentary of a video by ''New Scientist'' was put out by ''ScienceReader''<ref name="ScienceReader">{{cite web |title=Does Space-Time Remember? |website=ScienceReader |date=18 June 2025 |url=https://sciencereader.com/florian-neukart-does-space-time-remember/ |access-date=13 July 2025}}</ref>
* International outlets also reported on the hypothesis and covered the ''New Scientist'' article: ▼
** ''Géo'' (France) called it
** ''Courrier International''
** ''FocusTech'' (Italy) wrote that it
▲* International outlets also reported on the hypothesis:
▲** ''Géo'' (France) called it “la théorie qui pourrait absolument tout bouleverser.”<ref>{{cite web |title=Et si l'espace-temps était doté d'une mémoire ? La théorie qui pourrait absolument tout bouleverser |website=Géo |date=17 Jun 2025 |url=https://www.geo.fr/sciences/et-si-lespace-temps-etait-dote-dune-memoire-la-theorie-qui-pourrait-absolument-tout-bouleverser-227116}}</ref>
▲** ''Courrier International'' featured the question “L'espace-temps est-il une mémoire ?” on its front page.<ref>{{cite web |title=L'espace-temps est-il une mémoire ? |website=Courrier International |date=18 Jun 2025 |url=https://www.courrierinternational.com/une/une-du-jour-l-espace-temps-est-il-une-memoire_232202}}</ref>
▲** ''FocusTech'' (Italy) wrote that it “riscrive le leggi della fisica.”<ref>{{cite web |title=L'universo potrebbe avere una memoria ? La teoria che riscrive le leggi della fisica |website=FocusTech |language=it |date=20 Jun 2025 |url=https://focustech.it/news/luniverso-potrebbe-avere-una-memoria-la-teoria-che-riscrive-le-leggi-della-fisica/}}</ref>
** ''Xataka Brasil'' explored quantum-gravity ramifications.<ref>{{cite web |title=A coisa mais chocante que a física tem a oferecer é a possibilidade de um entrelaçamento quântico reescrever a gravidade |website=Xataka Brasil |language=pt |date=22 Jun 2025 |url=https://www.xataka.com.br/ciencia/a-coisa-mais-chocante-que-a-fisica-tem-a-oferecer-e-a-possibilidade-um-entrelacamento-quantico-reescrever-a-gravidade}}</ref>
** ''Levante-EMV'' (Spain) reported new hints that
** ''Mystery Planet'' (Argentina) said the universe might possess
** ''Anomalien'' reported on the idea in an article titled "The universe may have its own memory, physicists say."<ref>{{cite web |title=The universe may have its own memory, physicists say |website=Anomalien |date=27 Jun 2025 |url=https://anomalien.com/the-universe-may-have-its-own-memory-physicists-say/ |access-date=13 July 2025}}</ref>
* Coverage specific to the QMM-enhanced error-correction experiments:
** ''HPCwire'': "Terra Quantum Reports Hardware-Validated QMM Layer for Enhancing Quantum Computation Fidelity".<ref>{{cite web |title=Terra Quantum Reports Hardware-Validated QMM Layer for Enhancing Quantum Computation Fidelity |website=HPCwire |url=https://www.hpcwire.com/off-the-wire/terra-quantum-reports-hardware-validated-qmm-layer-for-enhancing-quantum-computation-fidelity/ |access-date=14 August 2025}}</ref>
** ''KRON4'' (EIN Presswire syndication): "Terra Quantum brings quantum gravity to quantum computing: new breakthrough reduces errors without added complexity".<ref>{{cite web |title=Terra Quantum brings quantum gravity to quantum computing: new breakthrough reduces errors without added complexity |website=KRON4 |url=https://www.kron4.com/business/press-releases/ein-presswire/839754888/terra-quantum-brings-quantum-gravity-to-quantum-computing-new-breakthrough-reduces-errors-without-added-complexity/ |access-date=14 August 2025}}</ref>
==See also==
Line 141 ⟶ 137:
* [[Quantum information]]
* [[Unified field theory]]
* [[Grand
* [[Loop quantum gravity]]
* [[Quantum error correction]]
|