Strongly regular graph: Difference between revisions

Content deleted Content added
m Geodetic graphs: Rm superfluous word.
 
(6 intermediate revisions by 3 users not shown)
Line 41:
* [[Self-complementary graph|Self-complementary]] [[symmetric graph|arc-transitive]] graphs are strongly regular.
 
A strongly regular graph is called '''primitive''' if both the graph and its complement are connected. All the above graphs are primitive, as otherwise {{nowrap|μ {{=}} 0}} or {{nowrap|''v'' + λ {{=}} 2''k''}}.
 
[[Conway's 99-graph problem]] asks for the construction of an srg(99, 14, 1, 2). It is unknown whether a graph with these parameters exists, and [[John Horton Conway]] offered a $1000 prize for the solution to this problem.<ref>{{citation
Line 52:
 
===Triangle-free graphs===
The strongly regular graphs with λ&nbsp;=&nbsp;0 are [[triangle-free graph|triangle free]]. Apart from the complete graphs on fewer than 3 vertices and all regular complete bipartite graphs, the seven listed earlier (pentagon, Petersen, Clebsch, Hoffman-Singleton, Gewirtz, Mesner-M22, and Higman-Sims) are the only known ones.
 
===Geodetic graphs===
Every strongly regular graph with <math>\mu = 1</math> is a [[geodetic graph]], a graph in which every two vertices have a unique [[Shortest path problem|unweighted shortest path]].<ref name=bb>{{citation
| last1 = Blokhuis | first1 = A.
| last2 = Brouwer | first2 = A. E. | authorlink = Andries Brouwer
Line 167:
* Absolute bound: <math>v \le \frac{f(f+3)}{2}</math> and <math>v \le \frac{g(g+3)}{2}</math>.
* Claw bound: if <math>r + 1 > \frac{s(s+1)(\mu+1)}{2}</math>, then <math>\mu = s^2</math> or <math>\mu = s(s+1)</math>.
If any of the above condition(s)conditions are violated for anya set of parameters, then there exists no strongly regular graph for those parameters. Brouwer has compiled such lists of existence or non-existence [https://www.win.tue.nl/~aeb/graphs/srg/srgtab.html here] with reasons for non-existence if any. For example, there exists no srg(28,9,0,4) because that violates one of the Krein conditions and one of the absolute bound conditions.
 
===The Hoffman–Singleton theorem===
Line 174:
which must be integers.
 
In 1960, [[Alan J. Hoffman|Alan Hoffman]] and Robert Singleton examined those expressions when applied on [[Moore graph]]s, which are strongly regular graphs that have ''λ'' = 0 and ''μ'' = 1. Such graphs are free of triangles (otherwise ''λ'' would exceed zero) and quadrilaterals (otherwise ''μ'' would exceed 1), hence they have a girth (smallest cycle length) of 5. Substituting the values of ''λ'' and ''μ'' in the equation <math>(v - k - 1)\mu = k(k - \lambda - 1)</math>, it can be seen that <math>v = k^2 + 1</math>, and the eigenvalue multiplicities reduce to
:<math>M_{\pm} = \frac{1}{2}\left[k^2 \pm \frac{2k - k^2}{\sqrt{4k - 3}}\right]</math>
 
Line 196:
* ''k'' = 3 and ''v'' = 10 yields the [[Petersen graph]],
* ''k'' = 7 and ''v'' = 50 yields the [[Hoffman–Singleton graph]], discovered by Hoffman and Singleton in the course of this analysis, and
* ''k'' = 57 and ''v'' = 3250 famously predicts a famous graph that has neither been discovered since 1960, nor has its existence been disproven.<ref>{{citation
| last = Dalfó | first = C.
| doi = 10.1016/j.laa.2018.12.035
Line 209:
}}</ref>
 
The Hoffman-Singleton theorem states that there are no strongly regular girth-5 Moore graphs except the ones listed above.
 
==See also==