Quantum cryptography: Difference between revisions

Content deleted Content added
Replaced the words "best example" with "one aspect" because it introduced bias, according to wikipedia rules.
No edit summary
(9 intermediate revisions by 2 users not shown)
Line 3:
{{Use dmy dates|date=September 2020}}
 
'''Quantum cryptography''' is the science of exploiting [[Quantum mechanics|quantum mechanical]] properties such as quantum entanglement, measurement distrubancedisturbance, no-cloning theorem, and the principle of superposition to perform various [[cryptographic]] tasks.<ref>{{Cite journal|last1=Gisin|first1=Nicolas|last2=Ribordy|first2=Grégoire|last3=Tittel|first3=Wolfgang|last4=Zbinden|first4=Hugo|display-authors=|year=2002|title=Quantum cryptography|url=https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.74.145|journal=Reviews of Modern Physics|volume=74|issue=1|pages=145–195|doi=10.1103/RevModPhys.74.145|arxiv=quant-ph/0101098|bibcode=2002RvMP...74..145G|s2cid=6979295}}</ref><ref name=":4">{{Cite journal|last1=Pirandola|first1=S.|last2=Andersen|first2=U. L.|last3=Banchi|first3=L.|last4=Berta|first4=M.|last5=Bunandar|first5=D.|last6=Colbeck|first6=R.|last7=Englund|first7=D.|last8=Gehring|first8=T.|last9=Lupo|first9=C.|last10=Ottaviani|first10=C.|last11=Pereira|first11=J. L.|display-authors=et al.|year=2020|title=Advances in quantum cryptography|url=https://www.osapublishing.org/aop/abstract.cfm?uri=aop-12-4-1012|journal=Advances in Optics and Photonics|volume=12|issue=4|pages=1012–1236|arxiv=1906.01645|doi=10.1364/AOP.361502|bibcode=2020AdOP...12.1012P|s2cid=174799187}}</ref><ref>{{Cite journal |last=Renner |first=Renato |last2=Wolf |first2=Ramona |date=2023 |title=Quantum Advantage in Cryptography |url=https://doi.org/10.2514/1.J062267 |journal=AIAA Journal |volume=61 |issue=5 |pages=1895–1910 |doi=10.2514/1.J062267 |issn=0001-1452}}</ref> Historically defined as the practice of encoding messages, a concept now referred to as encryption, cryptography plays a crucial role in the secure processing, storage, and transmission of information across various domains. One aspect of quantum cryptography is [[quantum key distribution]] (QKD), which offers an [[Information-theoretic security|information-theoretically secure]] solution to the [[key exchange]] problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication. This advantage givesFurthermore, quantum cryptography significantaffords practicalitythe inauthentication today'sof digital agemessages, wherewhich cyberattacksallows havethe becomelegitimates increasinglyparties sophisticatedto prove that the messages wre not wiretaped during transmission.<ref>{{Cite journal |last=Gisin |first=Nicolas |last2=Ribordy |first2=Grégoire |last3=Tittel |first3=Wolfgang |last4=Zbinden |first4=Hugo |date=2002-03-08 |title=Quantum cryptography |url=https://link.aps.org/doi/10.1103/RevModPhys.74.145 |journal=Reviews of Modern Physics |volume=74 |issue=1 |pages=145–195 |doi=10.1103/RevModPhys.74.145}}</ref> For example, in a cryptographic set-up, it is [[No-cloning theorem|impossible to copy]] with perfect fidelity, the data encoded in a [[quantum state]]. If one attempts to read the encoded data, the quantum state will be changed due to [[wave function collapse]] ([[no-cloning theorem]]). This could be used to detect eavesdropping in QKD schemes, or in quantum communication links and networks. These advantages have significantly influenced the evolution of quantum cryptography, making it practical in today's digital age, where devices are increasingly interconnected and cyberattacks have become more sophisticated. As such quantum cryptography is a critical component in the advancement of a quantum internet, as it establishes robust mechanisms to ensure the long-term privacy and integrity of digital communications and systems.<ref>{{Cite journal |last=Mitra |first=Saptarshi |last2=Jana |first2=Bappaditya |last3=Bhattacharya |first3=Supratim |last4=Pal |first4=Prashnatita |last5=Poray |first5=Jayanta |date=November 2017 |title=Quantum cryptography: Overview, security issues and future challenges |url=https://ieeexplore.ieee.org/abstract/document/8350006 |journal=2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix) |pages=1–7 |doi=10.1109/OPTRONIX.2017.8350006}}</ref>
 
== History ==
Line 124:
 
=== Deprecation of quantum key distributions from governmental institutions ===
Because of the practical problems with quantum key distribution, some governmental organizations recommend the use of post-quantum cryptography (quantum resistant cryptography) instead. For example, the US [[National Security Agency]],<ref name="NSA">{{cite web |title=Quantum Key Distribution (QKD) and Quantum Cryptography (QC) |url=https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/ |publisher=[[National Security Agency]] |access-date=16 July 2022}} {{PD-notice}}</ref> [[European Union Agency for Cybersecurity]] of EU (ENISA),<ref>Post-Quantum Cryptography: Current state and quantum mitigation, Section 6 "Conclusion" [https://www.enisa.europa.eu/publications/post-quantum-cryptography-current-state-and-quantum-mitigation]</ref> UK's [[National Cyber Security Centre (United Kingdom)|National Cyber Security Centre]],<ref>[https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies Quantum security technologies]</ref> French Secretariat for Defense and Security (ANSSI), <ref> Should Quantum Key Distribution be Used for Secure Communications? [https://cyber.gouv.fr/en/publications/should-quantum-key-distribution-be-used-secure-communications Should Quantum Key Distribution be Used for Secure Communications?]</ref> and German Federal Office for Information Security (BSI)<ref>{{cite web | url=https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Quantentechnologien-und-Post-Quanten-Kryptografie/Quantenkryptografie/quantenkryptografie.html | title=Quantum Cryptography }}</ref> recommend post-quantum cryptography.
 
For example, the US National Security Agency addresses five issues:<ref name="NSA" />