Content deleted Content added
FuzzyMagma (talk | contribs) mNo edit summary |
m Open access bot: url-access=subscription updated in citation with #oabot. |
||
(8 intermediate revisions by 6 users not shown) | |||
Line 3:
{{Use dmy dates|date=March 2023}}
{{Use British English|date=March 2023}}
[[File:EBSD (001) Si.png|thumb|An electron backscatter diffraction pattern of [[monocrystalline silicon]], taken at 20 kV with a [[Field electron emission|field-emission]] electron source|alt=An electron backscatter diffraction pattern of monocrystalline silicon, taken at 20 kV with a field-emission electron source. The Kikuchi bands intersect at the centre of the image |300x300px]]
'''Electron backscatter diffraction''' ('''EBSD''') is a [[scanning electron microscopy]] (SEM) technique used to study the [[Crystallography|crystallographic]] structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a [[Phosphorescence|phosphorescent]] screen, a compact lens and a low-light [[Charge-coupled device|camera]]. In the microscope an incident beam of electrons hits a tilted sample. As backscattered electrons leave the sample, they interact with the atoms and are both elastically [[Electron diffraction|diffracted]] and lose energy, leaving the sample at various scattering angles before reaching the phosphor screen forming [[Kikuchi lines (physics)|Kikuchi patterns]] (EBSPs). The EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. They can be indexed to provide information about the material's grain [[Crystal structure|structure]], grain [[Electron crystallography|orientation]], and [[Phase (matter)|phase]] at the micro-scale. EBSD is used for impurities and [[Crystallographic defect|defect studies]], [[Plasticity (physics)|plastic deformation]], and statistical analysis for average [[misorientation]], [[Grain boundary|grain]] size, and crystallographic texture. EBSD can also be combined with [[energy-dispersive X-ray spectroscopy]] (EDS), [[cathodoluminescence]] (CL), and [[wavelength dispersive X-ray spectroscopy|wavelength-dispersive X-ray spectroscopy]] (WDS) for advanced [[Phase-change material|phase identification]] and materials discovery.
Line 16:
The EBSD detector is located within the specimen chamber of the SEM at an angle of approximately 90° to the pole piece. The EBSD detector is typically a phosphor screen that is excited by the backscattered electrons.<ref name=":45" /> The screen is coupled to lens which focuses the image from the phosphor screen onto a [[charge-coupled device]] (CCD) or c[[CMOS|omplementary metal–oxide–semiconductor]] (CMOS) camera.<ref>{{Cite journal |last1=Goulden |first1=J. |last2=Trimby |first2=P. |last3=Bewick |first3=A. |date=2018-08-01 |title=The Benefits and Applications of a CMOS-based EBSD Detector |journal=Microscopy and Microanalysis |volume=24 |issue=S1 |pages=1128–1129 |doi=10.1017/s1431927618006128 |bibcode=2018MiMic..24S1128G |s2cid=139967518 |doi-access=free }}</ref>
In this configuration, as the backscattered electrons leave the sample, they interact with the [[Electric potential|Coulomb potential]] and also lose energy due to [[inelastic scattering]] leading to a range of scattering angles (θ<sub>hkl</sub>).<ref name=":45">{{Citation |last=Randle |first=Valerie |title=Theoretical Framework for Electron Backscatter Diffraction |date=2000 |work=Electron Backscatter Diffraction in Materials Science |pages=19–30 |editor-last=Schwartz |editor-first=Adam J. |place=Boston, MA |publisher=Springer US |doi=10.1007/978-1-4757-3205-4_2 |isbn=978-1-4757-3205-4 |editor2-last=Kumar |editor2-first=Mukul |editor3-last=Adams |editor3-first=Brent L. }}</ref><ref name=":19">{{Citation |last1=Eades |first1=Alwyn |title=Energy Filtering in EBSD |date=2009 |work=Electron Backscatter Diffraction in Materials Science |pages=53–63 |editor-last=Schwartz |editor-first=Adam J. |place=Boston, MA |doi=10.1007/978-0-387-88136-2_4 |isbn=978-0-387-88136-2 |last2=Deal |first2=Andrew |last3=Bhattacharyya |first3=Abhishek |last4=Hooghan |first4=Tejpal |editor2-last=Kumar |editor2-first=Mukul |editor3-last=Adams |editor3-first=Brent L. |editor4-last=Field |editor4-first=David P. }}</ref> The backscattered electrons form [[Kikuchi lines (physics)|Kikuchi lines]] – having different intensities – on an electron-sensitive flat film/screen (commonly phosphor), gathered to form a Kikuchi band. These Kikuchi lines are the trace of a hyperbola formed by the intersection of [[Walther Kossel|Kossel]] cones with the plane of the phosphor screen. The width of a Kikuchi band is related to the scattering angles and, thus, to the distance d<sub>hkl</sub> between lattice planes with Miller indexes h, k, and l.<ref name=":20">{{Cite journal |last1=Wilkinson |first1=Angus J. |last2=Britton |first2=T. Ben. |date=2012 |title=Strains, planes, and EBSD in materials science |journal=Materials Today |volume=15 |issue=9 |pages=366–376 |doi=10.1016/S1369-7021(12)70163-3 |doi-access=free }}</ref><ref>{{Cite journal |last1=Sawatzki |first1=Simon |last2=Woodcock |first2=Thomas G. |last3=Güth |first3=Konrad |last4=Müller |first4=Karl-Hartmut |last5=Gutfleisch |first5=Oliver |date=2015 |title=Calculation of remanence and degree of texture from EBSD orientation histograms and XRD rocking curves in Nd–Fe–B sintered magnets |journal=Journal of Magnetism and Magnetic Materials |volume=382 |pages=219–224 |doi=10.1016/j.jmmm.2015.01.046 |bibcode=2015JMMM..382..219S }}</ref> These Kikuchi lines and patterns were named after [[Seishi Kikuchi]], who, together with [[Shoji Nishikawa]], was the first to notice this diffraction pattern in 1928 using [[transmission electron microscopy]] (TEM)<ref>{{Cite journal |last1=Nishikawa |first1=S. |last2=Kikuchi |first2=S. |date=June 1928 |title=Diffraction of Cathode Rays by Mica |url=http://dx.doi.org/10.1038/1211019a0 |journal=Nature |volume=121 |issue=3061 |pages=1019–1020 |doi=10.1038/1211019a0 |bibcode=1928Natur.121.1019N |issn=0028-0836|url-access=subscription }}</ref> which is similar in geometry to X-ray Kossel pattern.<ref>{{Cite journal |last1=Tixier |first1=R. |last2=Waché |first2=C. |date=1970 |title=Kossel patterns |journal=Journal of Applied Crystallography |volume=3 |issue=6 |pages=466–485 |doi=10.1107/S0021889870006726 |bibcode=1970JApCr...3..466T }}</ref><ref>{{Citation |last1=Maitland |first1=Tim |title=Backscattering Detector and EBSD in Nanomaterials Characterization |date=2007 |work=Scanning Microscopy for Nanotechnology: Techniques and Applications |pages=41–75 |editor-last=Zhou |editor-first=Weilie |place=New York, New York |publisher=Springer |doi=10.1007/978-0-387-39620-0_2 |isbn=978-0-387-39620-0 |last2=Sitzman |first2=Scott |editor2-last=Wang |editor2-first=Zhong Lin}}</ref>
The systematically arranged Kikuchi bands, which have a range of intensity along their width, intersect around the centre of the regions of interest (ROI), describing the probed volume crystallography.<ref>{{Cite journal |date=1954|title=High-angle Kikuchi patterns |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |volume=221 |issue=1145 |pages=224–242 |doi=10.1098/rspa.1954.0017 |bibcode=1954RSPSA.221..224A |last1=Alam |first1=M. N. |last2=Blackman |first2=M. |last3=Pashley |first3=D. W. |s2cid=97131764 }}</ref> These bands and their intersections form what is known as Kikuchi patterns or electron backscatter patterns (EBSPs). To improve contrast, the patterns' background is corrected by removing anisotropic/inelastic scattering using static background correction or dynamic background correction.<ref>{{Cite journal |last1=Dingley |first1=D J |last2=Wright |first2=S I |last3=Nowell |first3=M M |date=August 2005 |title=Dynamic Background Correction of Electron Backscatter Diffraction Patterns |journal=Microscopy and Microanalysis |volume=11 |issue=S02 |doi=10.1017/S1431927605506676 |s2cid=137658758 |doi-access=free }}</ref>
Line 22:
=== EBSD detectors ===
EBSD is conducted using an SEM equipped with an EBSD detector containing at least a phosphor screen, compact lens and low-light [[
The biggest advantage of the high-resolution detectors is their higher sensitivity, and therefore the information within each diffraction pattern can be analysed in more detail. For texture and orientation measurements, the diffraction patterns are [[Pixel binning|binned]] to reduce their size and computational times. Modern CCD-based EBSD systems can index patterns at a speed of up to 1800 patterns/second. This enables rapid and rich microstructural maps to be generated.<ref name=":20" /><ref name=":15">{{Cite journal |last1=Britton |first1=T. B. |last2=Jiang |first2=J. |last3=Guo |first3=Y. |last4=Vilalta-Clemente |first4=A. |last5=Wallis |first5=D. |last6=Hansen |first6=L. N. |last7=Winkelmann |first7=A. |last8=Wilkinson |first8=A. J. |date=2016 |title=Tutorial: Crystal orientations and EBSD — Or which way is up? |journal=Materials Characterization |volume=117 |pages=113–126 |doi=10.1016/j.matchar.2016.04.008 |s2cid=138070296|doi-access=free |hdl=10044/1/31250 |hdl-access=free }}</ref>
Line 48:
=== Pattern indexing ===
[[File:EBSP Indexing and formation.tif|thumb|Formation of Kossel cone which
If the setup geometry is well described, it is possible to relate the bands present in the diffraction pattern to the underlying crystal and [[Orientation (geometry)|crystallographic orientation]] of the material within the electron interaction volume. Each band can be indexed individually by the [[Miller index|Miller indices]] of the diffracting plane which formed it. In most materials, only three bands/planes intersect and are required to describe a unique solution to the crystal orientation (based on their interplanar angles). Most commercial systems use look-up tables with international crystal databases to index. This crystal orientation relates the orientation of each sampled point to a reference crystal orientation.<ref name=":18" /><ref name=":21">{{Citation |last1=El-Dasher |first1=Bassem |title=Application of Electron Backscatter Diffraction to Phase Identification |date=2009 |url=https://digital.library.unt.edu/ark:/67531/metadc1012145/ |work=Electron Backscatter Diffraction in Materials Science |pages=81–95 |editor-last=Schwartz |editor-first=Adam J. |access-date=20 March 2023 |archive-url=https://web.archive.org/web/20230325200543/https://digital.library.unt.edu/ark:/67531/metadc1012145/ |url-status=live |place=Boston, MA |publisher=Springer US |doi=10.1007/978-0-387-88136-2_6 |isbn=978-0-387-88136-2 |archive-date=25 March 2023 |last2=Deal |first2=Andrew |editor2-last=Kumar |editor2-first=Mukul |editor3-last=Adams |editor3-first=Brent L. |editor4-last=Field |editor4-first=David P.|url-access=subscription }}</ref>
Indexing is often the first step in the EBSD process after pattern collection. This allows for the identification of the crystal orientation at the single volume of the sample from where the pattern was collected.<ref>{{Cite web |title=New technique provides detailed views of metals' crystal structure |url=https://news.mit.edu/2016/metals-crystal-structure-0706 |url-status=live |archive-url=https://web.archive.org/web/20230302142459/https://news.mit.edu/2016/metals-crystal-structure-0706 |archive-date=2023-03-02 |website=MIT News {{!}} Massachusetts Institute of Technology|date=6 July 2016 }}</ref><ref name="EBSDSpringer2009">{{cite book |url=https://archive.org/details/electronbackscat00ajsc |title=Electron backscatter diffraction in materials science |date=2009 |publisher=Springer Science+Business Media |isbn=978-0-387-88135-5 |edition=2nd |page=[https://archive.org/details/electronbackscat00ajsc/page/n21 1] |url-access=limited}}</ref> With EBSD software, pattern bands are typically detected via a mathematical routine using a modified [[Hough transform]], in which every pixel in Hough space denotes a unique line/band in the EBSP. The Hough transform enables band detection, which is difficult to locate by computer in the original EBSP. Once the band locations have been detected, it is possible to relate these locations to the underlying crystal orientation, as angles between bands represent angles between lattice planes. Thus, an orientation solution can be determined when the position/angles between three bands are known. In highly symmetric materials, more than three bands are typically used to obtain and verify the orientation measurement.<ref name="EBSDSpringer2009" />
The diffraction pattern is pre-processed to remove noise, correct for detector distortions, and normalise the intensity. Then, the pre-processed diffraction pattern is compared to a library of reference patterns for the material being studied. The reference patterns are generated based on the material's known crystal structure and the crystal lattice's orientation. The orientation of the crystal lattice that would generate the best match to the measured pattern is determined using a variety of algorithms. There are three leading methods of indexing that are performed by most commercial EBSD software: triplet voting;<ref>{{Cite journal |last1=Wright |first1=Stuart I. |last2=Zhao |first2=Jun-Wu |last3=Adams |first3=Brent L. |date=1991 |title=Automated Determination of Lattice Orientation From Electron Backscattered Kikuchi Diffraction Patterns |journal=Texture, Stress, and Microstructure |volume=13 |issue=2–3 |pages=123–131 |doi=10.1155/TSM.13.123 |doi-access=free}}</ref><ref>{{Cite journal |last1=Wright |first1=Stuart I. |last2=Adams |first2=Brent L. |last3=Kunze |first3=Karsten |date=1993|title=Application of a new automatic lattice orientation measurement technique to polycrystalline aluminum |journal=Materials Science and Engineering: A |volume=160 |issue=2 |pages=229–240 |doi=10.1016/0921-5093(93)90452-K }}</ref> minimising the 'fit' between the experimental pattern and a computationally determined orientation,<ref>{{Cite journal |last=Lassen |first=Niels Chr. Krieger |date=1992 |title=Automatic crystal orientation determination from EBSPs |journal=Micron and Microscopica Acta |volume=23 |issue=1 |pages=191–192 |doi=10.1016/0739-6260(92)90133-X }}</ref><ref>{{Cite journal |last1=Krieger Lassen |first1=N.C. |last2=Juul Jensen |first2=Dorte |last3=Condradsen |first3=K. |date=1994 |title=Automatic Recognition of Deformed and Recrystallized Regions in Partly Recrystallized Samples Using Electron Back Scattering Patterns |journal=Materials Science Forum |volume=157–162 |pages=149–158 |doi=10.4028/www.scientific.net/msf.157-162.149 |s2cid=137129038}}</ref> and or/and neighbour pattern averaging and re-indexing, NPAR<ref>{{Cite journal |last1=Wright |first1=Stuart I. |last2=Nowell |first2=Matthew M. |last3=Lindeman |first3=Scott P. |last4=Camus |first4=Patrick P. |last5=De Graef |first5=Marc |last6=Jackson |first6=Michael A. |date=2015|title=Introduction and comparison of new EBSD post-processing methodologies |journal=Ultramicroscopy |volume=159 |pages=81–94 |doi=10.1016/j.ultramic.2015.08.001 |pmid=26342553 |doi-access=free }}</ref>). Indexing then give a unique solution to the [[single crystal]] orientation that is related to the other crystal orientations within the field-of-view.<ref>{{cite journal |last1=Randle |first1=Valerie |date= 2009 |title=Electron backscatter diffraction: Strategies for reliable data acquisition and processing |journal=Materials Characterization |volume=60 |issue=9 |pages=913–922 |doi=10.1016/j.matchar.2009.05.011}}</ref><ref name=":14">{{Cite thesis |last=Lassen |first=Niels Christian Krieger |title=Automated Determination of Crystal Orientations from Electron Backscattering Patterns |date=1994 |degree=PhD |publisher=The Technical University of Denmark |url=http://www.ebsd.info/pdf/PhD_KriegerLassen.pdf |archive-date=2022-03-08 |archive-url=https://web.archive.org/web/20220308024650/http://www.ebsd.info/pdf/PhD_KriegerLassen.pdf |url-status=live}}</ref>
Triplet voting involves identifying multiple 'triplets' associated with different solutions to the crystal orientation; each crystal orientation determined from each triplet receives one vote. Should four bands identify the same crystal orientation, then four ([[Combination|four choose three]], i.e. <math>C(4,3)</math>) votes will be cast for that particular solution. Thus the candidate orientation with the highest number of votes will be the most likely solution to the underlying crystal orientation present. The number of votes for the solution chosen compared to the total number of votes describes the confidence in the underlying solution. Care must be taken in interpreting this 'confidence index' as some pseudo-symmetric orientations may result in low confidence for one candidate solution vs another.<ref>{{Cite journal |journal=Microscopy and Microanalysis |doi=10.1017/s143192761501096x |title=Addressing Pseudo-Symmetric Misindexing in EBSD Analysis of γ-TiAl with High Accuracy Band Detection |year=2015 |last1=Sitzman |first1=Scott |last2=Schmidt |first2=Niels-Henrik |last3=Palomares-Garcia |first3=Alberto |last4=Munoz-Moreno |first4=Rocio |last5=Goulden |first5=Jenny |volume=21 |issue=S3 |pages=2037–2038 |bibcode=2015MiMic..21S2037S |s2cid=51964340 |doi-access=free }}</ref><ref>{{Cite journal |last1=Lenthe |first1=W. |last2=Singh |first2=S. |last3=De Graef |first3=M. |date=2019 |title=Prediction of potential pseudo-symmetry issues in the indexing of electron backscatter diffraction patterns |url=https://journals.iucr.org/j/issues/2019/05/00/po5152/ |journal=Journal of Applied Crystallography |volume=52 |issue=5 |pages=1157–1168 |doi=10.1107/S1600576719011233 |bibcode=2019JApCr..52.1157L |osti=1575873 |s2cid=204108200 }}</ref><ref>{{Citation |last1=Dingley |first1=David J. |title=Phase Identification Through Symmetry Determination in EBSD Patterns |date=2009 |work=Electron Backscatter Diffraction in Materials Science |pages=97–107 |editor-last=Schwartz |editor-first=Adam J. |place=Boston, MA |publisher=Springer US |doi=10.1007/978-0-387-88136-2_7 |isbn=978-0-387-88136-2 |last2=Wright |first2=S.I. |editor2-last=Kumar |editor2-first=Mukul |editor3-last=Adams |editor3-first=Brent L. |editor4-last=Field |editor4-first=David P. }}</ref> Minimising the fit involves starting with all possible orientations for a triplet. More bands are included, which reduces the number of candidate orientations. As the number of bands increases, the number of possible orientations converges ultimately to one solution. The 'fit' between the measured orientation and the captured pattern can be determined.<ref name=":14" />
Line 66:
Unfortunately, each of these methods is cumbersome and can be prone to some systematic errors for a general operator. Typically they cannot be easily used in modern SEMs with multiple designated uses. Thus, most commercial EBSD systems use the indexing algorithm combined with an iterative movement of crystal orientation and suggested pattern centre ___location. Minimising the fit between bands located within experimental patterns and those in look-up tables tends to converge on the pattern centre ___location to an accuracy of ~0.5–1% of the pattern width.<ref name=":15" /><ref name=":0" />
The recent development of AstroEBSD<ref>{{Cite journal |last1=Britton |first1=Thomas Benjamin |last2=Tong |first2=Vivian S. |last3=Hickey |first3=Jim |last4=Foden |first4=Alex |last5=Wilkinson |first5=Angus J. |date=2018 |title=AstroEBSD : exploring new space in pattern indexing with methods launched from an astronomical approach|journal=Journal of Applied Crystallography |volume=51 |issue=6 |pages=1525–1534 |doi=10.1107/S1600576718010373 |arxiv=1804.02602 |bibcode=2018JApCr..51.1525B |s2cid=51687153 }}</ref> and PCGlobal,<ref>{{Cite journal |last1=Pang |first1=Edward L. |last2=Larsen |first2=Peter M. |last3=Schuh |first3=Christopher A. |date=2020 |title=Global optimization for accurate determination of EBSD pattern centers |journal=Ultramicroscopy |volume=209 |pages=112876 |doi=10.1016/j.ultramic.2019.112876 |pmid=31707232 |s2cid=201651309|arxiv=1908.10692 }}</ref> open-source [[MATLAB]] codes, increased the precision of determining the pattern centre (PC) and – consequently – elastic strains<ref>{{Cite journal |last1=Tanaka |first1=Tomohito |last2=Wilkinson |first2=Angus J. |date=2019-07-01 |title=Pattern matching analysis of electron backscatter diffraction patterns for pattern centre, crystal orientation and absolute elastic strain determination – accuracy and precision assessment |journal=Ultramicroscopy|volume=202 |pages=87–99 |doi=10.1016/j.ultramic.2019.04.006 |pmid=31005023 |arxiv=1904.06891 |s2cid=119294636 }}</ref> by using a [[pattern matching]] approach<ref>{{Cite journal |last1=Foden |first1=A. |last2=Collins |first2=D.M. |last3=Wilkinson |first3=A.J. |last4=Britton |first4=T.B. |date=2019 |title=Indexing electron backscatter diffraction patterns with a refined template matching approach |journal=Ultramicroscopy |volume=207 |pages=112845 |doi=10.1016/j.ultramic.2019.112845 |pmid=31586829 |arxiv=1807.11313 |s2cid=203307560 }}</ref> which simulates the pattern using EMSoft.<ref>{{Cite journal |last1=Jackson |first1=M. A. |last2=Pascal |first2=E. |last3=De Graef |first3=M. |date=2019 |title=Dictionary Indexing of Electron Back-Scatter Diffraction Patterns: a Hands-On Tutorial |journal=Integrating Materials and Manufacturing Innovation |volume=8 |issue=2 |pages=226–246 |doi=10.1007/s40192-019-00137-4 |s2cid=182073071}}</ref>
=== EBSD mapping ===
Line 78:
=== Earlier trials ===
The change and degradation in electron backscatter patterns (EBSPs) provide information about the diffracting volume. Pattern degradation (i.e., diffuse quality) can be used to assess the level of plasticity through the pattern/image quality (IQ),<ref>{{Cite journal |last1=Lassen |first1=N. C. Krieger |last2=Jensen |first2=Dorte Juul |last3=Condradsen |first3=K. |date=1994 |title=Automatic Recognition of Deformed and Recrystallized Regions in Partly Recrystallized Samples Using Electron Back Scattering Patterns |url=https://www.scientific.net/MSF.157-162.149 |journal=Materials Science Forum |volume=157–162 |pages=149–158 |doi=10.4028/www.scientific.net/MSF.157-162.149 |s2cid=137129038 |access-date=2 March 2023 |archive-date=2 March 2023 |archive-url=https://web.archive.org/web/20230302135533/https://www.scientific.net/MSF.157-162.149 |url-status=live |url-access=subscription }}</ref> where IQ is calculated from the sum of the peaks detected when using the conventional Hough transform. [[Angus Wilkinson|Wilkinson]]<ref>{{Cite journal |last=Wilkinson |first=A. J. |date=1997-01-01 |title=Methods for determining elastic strains from electron backscatter diffraction and electron channelling patterns |journal=Materials Science and Technology |volume=13 |issue=1 |pages=79–84 |doi=10.1179/mst.1997.13.1.79 |bibcode=1997MatST..13...79W}}</ref> first used the changes in high-order Kikuchi line positions to determine the elastic strains, albeit with low [[Accuracy and precision|precision]]{{NoteTag|Throughout this page, the terms ‘error’, and ‘precision’ are used as defined in the [[International Bureau of Weights and Measures]] (BIPM) [https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 guide to measurement uncertainty]. In practice, ‘error’, ‘accuracy’ and ‘uncertainty’, as well as ‘true value’ and ‘best guess’, are synonymous. Precision is the variance (or standard deviation) between all estimated quantities. Bias is the difference between the average of measured values and an independently measured ‘best guess’. Accuracy is then the combination of bias and precision.<ref name=":10" />}} (0.3% to 1%); however, this approach cannot be used for characterising residual elastic strain in metals as the elastic strain at the yield point is usually around 0.2%. Measuring strain by tracking the change in the higher-order Kikuchi lines is practical when the strain is small, as the band position is sensitive to changes in lattice parameters.<ref name=":24">{{Cite journal |last1=Zhu |first1=Chaoyi |last2=De Graef |first2=Marc |date=2020 |title=EBSD pattern simulations for an interaction volume containing lattice defects |journal=Ultramicroscopy |volume=218 |pages=113088 |doi=10.1016/j.ultramic.2020.113088 |pmid=32784084 |s2cid=221123906 |doi-access=free }}</ref> In the early 1990s, Troost ''et al.''<ref>{{Cite journal |last1=Troost |first1=K. Z. |last2=van der Sluis |first2=P. |last3=Gravesteijn |first3=D. J. |date=1993 |title=Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope |journal=Applied Physics Letters |volume=62 |issue=10 |pages=1110–1112 |doi=10.1063/1.108758 |bibcode=1993ApPhL..62.1110T }}</ref> and Wilkinson ''et al.''<ref>{{Cite journal |last1=Wilkinson |first1=A. J. |last2=Dingley |first2=D. J. |date=1991 |title=Quantitative deformation studies using electron back scatter patterns |journal=Acta Metallurgica et Materialia |volume=39 |issue=12 |pages=3047–3055 |doi=10.1016/0956-7151(91)90037-2 }}</ref><ref>{{Cite journal |last=Wilkinson |first=Angus J. |date=1996 |title=Measurement of elastic strains and small lattice rotations using electron back scatter diffraction |journal=Ultramicroscopy |volume=62 |issue=4 |pages=237–247 |doi=10.1016/0304-3991(95)00152-2 |pmid=22666906 }}</ref> used pattern degradation and change in the zone axis position to measure the residual elastic strains and small lattice rotations with a 0.02% precision.<ref name=":10" />
=== High-resolution electron backscatter diffraction (HR-EBSD)===
Line 111:
=== Precision and development ===
The HR-EBSD method can achieve a precision of ±10<sup>−4</sup> in components of the displacement gradient tensors (i.e., variations in lattice strain and lattice rotation in radians) by measuring the shifts of zone axes within the pattern image with a resolution of ±0.05 pixels.<ref name=":6" /><ref name=":7">{{Cite journal |last1=Plancher |first1=E. |last2=Petit |first2=J. |last3=Maurice |first3=C. |last4=Favier |first4=V. |last5=Saintoyant |first5=L. |last6=Loisnard |first6=D. |last7=Rupin |first7=N. |last8=Marijon |first8=J.-B. |last9=Ulrich |first9=O. |last10=Bornert |first10=M. |last11=Micha |first11=J.-S. |last12=Robach |first12=O. |last13=Castelnau |first13=O. |date=2016-03-01 |title=On the Accuracy of Elastic Strain Field Measurements by Laue Microdiffraction and High-Resolution EBSD: a Cross-Validation Experiment |journal=Experimental Mechanics |volume=56 |issue=3 |pages=483–492 |doi=10.1007/s11340-015-0114-1 |s2cid=255157494 |url=https://hal.archives-ouvertes.fr/hal-02141119/file/PIMM%20-%20EM%20-%20PLANCHER%20-%202016.pdf |access-date=20 March 2023 |archive-date=13 March 2020 |archive-url=https://web.archive.org/web/20200313042805/https://hal.archives-ouvertes.fr/hal-02141119/file/PIMM%20-%20EM%20-%20PLANCHER%20-%202016.pdf |url-status=live }}</ref> It was limited to small strains and rotations (>1.5°) until [[Ben Britton|Britton]] and Wilkinson<ref name=":5" /> and Maurice et al.<ref>{{Cite journal |last1=Maurice |first1=Claire |last2=Driver |first2=Julian H. |last3=Fortunier |first3=Roland |date=2012 |title=On solving the orientation gradient dependency of high angular resolution EBSD |journal=Ultramicroscopy |volume=113 |pages=171–181 |doi=10.1016/j.ultramic.2011.10.013}}</ref> raised the rotation limit to ~11° by using a re-mapping technique that recalculated the strain after transforming the patterns with a [[rotation matrix]] (<math>R</math>) calculated from the first cross-correlation iteration.<ref name=":10" />
<math>R=\begin{pmatrix} \cos \omega_{12} & \sin \omega_{12} & 0 \\ -\sin \omega_{12} & \cos \omega_{12} & 0\\ 0 & 0& 1 \end{pmatrix} \begin{pmatrix} 1&0&0\\0&\cos \omega_{23} & \sin \omega_{23} \\ 0&-\sin \omega_{23} & \cos \omega_{23} \end{pmatrix} \begin{pmatrix} \cos \omega_{31} &0& -\sin \omega_{31} \\ 0 & 1& 0 \\ \sin \omega_{31}&0 & \cos \omega_{31} \end{pmatrix}</math>
{{Wide image|Indent Si.tif|800|(a) Secondary electron (SE) image for the indentation on the (001) mono crystal. (b) HR-EBSD stress and rotation components, and geometrical necessary dislocations density (<math>\rho_{GND}</math>). The ___location of EBSP<sub>0</sub> is highlighted with a star in <math>\sigma_{yz}</math>. The step size is 250 nm
However, further lattice rotation, typically caused by severe plastic deformations, produced errors in the elastic strain calculations. To address this problem, Ruggles ''et al.''<ref>{{Cite journal |last1=Ruggles |first1=T. J. |last2=Bomarito |first2=G. F. |last3=Qiu |first3=R. L. |last4=Hochhalter |first4=J. D. |date=2018-12-01 |title=New levels of high angular resolution EBSD performance via inverse compositional Gauss–Newton based digital image correlation |journal=Ultramicroscopy |volume=195 |pages=85–92 |doi=10.1016/j.ultramic.2018.08.020 |pmc=7780544 |pmid=30216795}}</ref> improved the HR-EBSD precision, even at 12° of lattice rotation, using the inverse compositional Gauss–Newton-based (ICGN) method instead of cross-correlation. For simulated patterns, Vermeij and Hoefnagels<ref>{{Cite journal |last1=Vermeij |first1=T. |last2=Hoefnagels |first2=J. P. M. |date=2018 |title=A consistent full-field integrated DIC framework for HR-EBSD |journal=Ultramicroscopy |volume=191 |pages=44–50 |doi=10.1016/j.ultramic.2018.05.001 |pmid=29772417 |s2cid=21685690 |url=https://pure.tue.nl/ws/files/101858753/Manuscript_HR_EBSD_Vermeij_Hoefnagels.pdf |access-date=20 March 2023 |archive-date=16 July 2021 |archive-url=https://web.archive.org/web/20210716043300/https://pure.tue.nl/ws/files/101858753/Manuscript_HR_EBSD_Vermeij_Hoefnagels.pdf |url-status=live }}</ref> also established a method that achieves a precision of ±10<sup>−5</sup> in the displacement gradient components using a full-field integrated [[Digital image correlation and tracking|digital image correlation]] (IDIC) framework instead of dividing the EBSPs into small ROIs. Patterns in IDIC are distortion-corrected to negate the need for re-mapping up to ~14°.<ref>{{Cite journal |last1=Ernould |first1=Clément |last2=Beausir |first2=Benoît |last3=Fundenberger |first3=Jean-Jacques |last4=Taupin |first4=Vincent |last5=Bouzy |first5=Emmanuel |date=2021 |title=Integrated correction of optical distortions for global HR-EBSD techniques |journal=Ultramicroscopy |volume=221 |pages=113158 |doi=10.1016/j.ultramic.2020.113158 |pmid=33338818 |s2cid=228997006 |doi-access=free }}</ref><ref>{{Cite journal |last1=Shi |first1=Qiwei |last2=Loisnard |first2=Dominique |last3=Dan |first3=Chengyi |last4=Zhang |first4=Fengguo |last5=Zhong |first5=Hongru |last6=Li |first6=Han |last7=Li |first7=Yuda |last8=Chen |first8=Zhe |last9=Wang |first9=Haowei |last10=Roux |first10=Stéphane |date=2021 |title=Calibration of crystal orientation and pattern center of EBSD using integrated digital image correlation |journal=Materials Characterization |volume=178 |pages=111206 |doi=10.1016/j.matchar.2021.111206 |s2cid=236241507 |url=https://hal.archives-ouvertes.fr/hal-03652308/file/calibrationMC_final.pdf |access-date=20 March 2023 |archive-date=25 March 2023 |archive-url=https://web.archive.org/web/20230325200435/https://hal.science/hal-03652308/file/calibrationMC_final.pdf |url-status=live }}</ref>
{| class="wikitable plainrowheaders"
Line 150:
The local lattice distortion at the EBSP<sub>0</sub> influences the resultant HR-EBSD map, e.g., a reference pattern deformed in tension will directly reduce the HR-EBSD map tensile strain magnitude while indirectly influencing the other component magnitude and the strain's spatial distribution. Furthermore, the choice of EBSP<sub>0</sub> slightly affects the GND density distribution and magnitude, and choosing a reference pattern with a higher GND density reduces the cross-correlation quality, changes the spatial distribution and induces more errors than choosing a reference pattern with high lattice distortion. Additionally, there is no apparent connection between EBSP<sub>0</sub>'s IQ and EBSP<sub>0</sub>'s local lattice distortion.<ref name=":10" />
The use of simulated reference patterns for absolute strain measurement is still an active area of research<ref name=":22">{{Cite journal |last1=Winkelmann |first1=Aimo |last2=Trager-Cowan |first2=Carol |last3=Sweeney |first3=Francis |last4=Day |first4=Austin P. |last5=Parbrook |first5=Peter |date=2007 |title=Many-beam dynamical simulation of electron backscatter diffraction patterns |journal=Ultramicroscopy |volume=107 |issue=4 |pages=414–421 |doi=10.1016/j.ultramic.2006.10.006 |pmid=17126489}}</ref><ref>{{Cite journal |last1=Kacher |first1=Josh |last2=Landon |first2=Colin |last3=Adams |first3=Brent L. |last4=Fullwood |first4=David |date=2009-08-01 |title=Bragg's Law diffraction simulations for electron backscatter diffraction analysis |journal=Ultramicroscopy |volume=109 |issue=9 |pages=1148–1156 |doi=10.1016/j.ultramic.2009.04.007 |pmid=19520512}}</ref><ref>{{Cite journal |last1=Winkelmann |first1=A |last2=Nolze |first2=G |last3=Vos |first3=M |last4=Salvat-Pujol |first4=F |last5=Werner |first5=W S M |date=2016 |title=Physics-based simulation models for EBSD: advances and challenges |journal=IOP Conference Series: Materials Science and Engineering |volume=109 |issue=1 |pages=012018 |doi=10.1088/1757-899x/109/1/012018 |arxiv=1505.07982 |bibcode=2016MS&E..109a2018W |s2cid=38586851}}</ref><ref>{{Cite journal |last1=Alkorta |first1=Jon |last2=Marteleur |first2=Matthieu |last3=Jacques |first3=Pascal J. |date=2017 |title=Improved simulation based HR-EBSD procedure using image gradient based DIC techniques |journal=Ultramicroscopy |volume=182 |pages=17–27 |doi=10.1016/j.ultramic.2017.06.015 |pmid=28644960 |hdl=2078.1/186551 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Winkelmann |first1=Aimo |last2=Nolze |first2=Gert |last3=Cios |first3=Grzegorz |last4=Tokarski |first4=Tomasz |last5=Bała |first5=Piotr |last6=Hourahine |first6=Ben |last7=Trager-Cowan |first7=Carol |date=November 2021 |title=Kikuchi pattern simulations of backscattered and transmitted electrons |journal=Journal of Microscopy |volume=284 |issue=2 |pages=157–184 |doi=10.1111/jmi.13051 |pmid=34275156 |s2cid=236091618 |url=https://strathprints.strath.ac.uk/78647/1/Winkelmann_etal_JM_2021_Kikuchi_pattern_simulations_of_backscattered_and_transmitted.pdf |access-date=20 March 2023 |archive-date=25 March 2023 |archive-url=https://web.archive.org/web/20230325200434/https://strathprints.strath.ac.uk/78647/1/Winkelmann_etal_JM_2021_Kikuchi_pattern_simulations_of_backscattered_and_transmitted.pdf |url-status=live }}</ref><ref>{{Cite journal |last=Winkelmann |first=A. |date= 2010 |title=Principles of depth-resolved Kikuchi pattern simulation for electron backscatter diffraction: KIKUCHI PATTERN SIMULATION FOR EBSD |journal=Journal of Microscopy |volume=239 |issue=1 |pages=32–45 |doi=10.1111/j.1365-2818.2009.03353.x |pmid=20579267 |s2cid=23590722}}</ref><ref>{{Cite journal |last1=Vermeij |first1=Tijmen |last2=De Graef |first2=Marc |last3=Hoefnagels |first3=Johan |date=2019-03-15 |title=Demonstrating the potential of accurate absolute cross-grain stress and orientation correlation using electron backscatter diffraction |journal=Scripta Materialia |volume=162 |pages=266–271 |doi=10.1016/j.scriptamat.2018.11.030 |arxiv=1807.03908 |s2cid=54575778 }}</ref><ref name="Angus J 2019">{{Cite journal |last1=Tanaka |first1=Tomohito |last2=Wilkinson |first2=Angus J. |date=2019-07-01 |title=Pattern matching analysis of electron backscatter diffraction patterns for pattern centre, crystal orientation and absolute elastic strain determination – accuracy and precision assessment |journal=Ultramicroscopy |volume=202 |pages=87–99 |doi=10.1016/j.ultramic.2019.04.006 |pmid=31005023 |arxiv=1904.06891 |s2cid=119294636 }}</ref> and scrutiny<ref name=":8" /><ref name="Angus J 2019"/><ref name="Brent L 2010">{{Cite journal |last1=Kacher |first1=Josh |last2=Basinger |first2=Jay |last3=Adams |first3=Brent L. |last4=Fullwood |first4=David T. |date=2010-06-01 |title=Reply to comment by Maurice et al. in response to "Bragg's Law Diffraction Simulations for Electron Backscatter Diffraction Analysis" |journal=Ultramicroscopy |volume=110 |issue=7 |pages=760–762 |doi=10.1016/j.ultramic.2010.02.004 |pmid=20189305 }}</ref><ref>{{Cite journal |last1=Britton |first1=T. B. |last2=Maurice |first2=C. |last3=Fortunier |first3=R. |last4=Driver |first4=J. H. |last5=Day |first5=A. P. |last6=Meaden |first6=G. |last7=Dingley |first7=D. J. |last8=Mingard |first8=K. |last9=Wilkinson |first9=A. J. |date=2010 |title=Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns |journal=Ultramicroscopy |volume=110 |issue=12 |pages=1443–1453 |doi=10.1016/j.ultramic.2010.08.001 |pmid=20888125 }}</ref><ref>{{Cite journal |last=Alkorta |first=Jon |date=2013-08-01 |title=Limits of simulation based high resolution EBSD |journal=Ultramicroscopy |volume=131 |pages=33–38 |doi=10.1016/j.ultramic.2013.03.020 |pmid=23676453 }}</ref><ref>{{Cite journal |last1=Jackson |first1=Brian E. |last2=Christensen |first2=Jordan J. |last3=Singh |first3=Saransh |last4=De Graef |first4=Marc |last5=Fullwood |first5=David T. |last6=Homer |first6=Eric R. |last7=Wagoner |first7=Robert H. |date=August 2016 |title=Performance of Dynamically Simulated Reference Patterns for Cross-Correlation Electron Backscatter Diffraction |journal=Microscopy and Microanalysis |volume=22 |issue=4 |pages=789–802 |doi=10.1017/S143192761601148X |pmid=27509538 |bibcode=2016MiMic..22..789J |s2cid=24482631}}</ref> as difficulties arise from the variation of inelastic electron scattering with depth which limits the accuracy of dynamical diffraction simulation models, and imprecise determination of the pattern centre which leads to phantom strain components which cancel out when using experimentally acquired reference patterns. Other methods assumed that absolute strain at EBSP<sub>0</sub> can be determined using [[crystal plasticity]] finite-element (CPFE) simulations, which then can be then combined with the HR-EBSD data (e.g., using linear 'top-up' method<ref>{{Cite journal |last1=Zhang |first1=Tiantian |last2=Collins |first2=David M. |last3=Dunne |first3=Fionn P. E. |last4=Shollock |first4=Barbara A.|author4-link=Barbara Shollock |date=2014|title=Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading |journal=Acta Materialia |volume=80 |pages=25–38 |doi=10.1016/j.actamat.2014.07.036 |hdl=10044/1/25979 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Guo |first1=Yi |last2=Zong |first2=Cui |last3=Britton |first3=T. B. |date=2021 |title=Development of local plasticity around voids during tensile deformation |journal=Materials Science and Engineering: A |volume=814 |pages=141227 |doi=10.1016/j.msea.2021.141227 |arxiv=2007.11890 |s2cid=234850241 }}</ref> or displacement integration<ref name=":33" />) to calculate the absolute lattice distortions.
In addition, GND density estimation is nominally insensitive to (or negligibly dependent upon<ref>{{Cite journal |last1=Jiang |first1=J. |last2=Britton |first2=T. B. |last3=Wilkinson |first3=A. J. |date=2013-11-01 |title=Evolution of dislocation density distributions in copper during tensile deformation |journal=Acta Materialia |volume=61 |issue=19 |pages=7227–7239 |doi=10.1016/j.actamat.2013.08.027 |bibcode=2013AcMat..61.7227J |doi-access=free }}</ref><ref>{{Cite journal |last1=Britton |first1=T B |last2=Hickey |first2=J L R |date= 2018 |title=Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD) |journal=IOP Conference Series: Materials Science and Engineering |volume=304 |issue=1 |pages=012003 |doi=10.1088/1757-899x/304/1/012003 |bibcode=2018MS&E..304a2003B |s2cid=54529072 |arxiv=1710.00728 }}</ref>) EBSP<sub>0</sub> choice, as only neighbour point-to-point differences in the lattice rotation maps are used for GND density calculation.<ref>{{Cite journal |last1=Kalácska |first1=Szilvia |last2=Dankházi |first2=Zoltán |last3=Zilahi |first3=Gyula |last4=Maeder |first4=Xavier |last5=Michler |first5=Johann |last6=Ispánovity |first6=Péter Dusán |last7=Groma |first7=István |date=2020 |title=Investigation of geometrically necessary dislocation structures in compressed Cu micropillars by 3-dimensional HR-EBSD |journal=Materials Science and Engineering: A |volume=770 |pages=138499 |doi=10.1016/j.msea.2019.138499 |s2cid=189928469 |url=https://bib-pubdb1.desy.de/record/426593 |access-date=20 March 2023 |archive-date=17 July 2020 |archive-url=https://web.archive.org/web/20200717095713/http://bib-pubdb1.desy.de/record/426593 |url-status=live |arxiv=1906.06980 }}</ref><ref>{{Cite journal |last1=Wallis |first1=David |last2=Hansen |first2=Lars N. |last3=Britton |first3=T. Ben |last4=Wilkinson |first4=Angus J. |date= 2017 |title=Dislocation Interactions in Olivine Revealed by HR-EBSD: Dislocation Interactions in Olivine |journal=Journal of Geophysical Research: Solid Earth |volume=122 |issue=10 |pages=7659–7678 |doi=10.1002/2017JB014513|hdl=10044/1/50615 |s2cid=134570945 |url=https://ora.ox.ac.uk/objects/uuid:54d4800c-a2c5-4434-be22-776d11aa2156 |hdl-access=free }}</ref> However, this assumes that the absolute lattice distortion of EBSP<sub>0</sub> only changes the relative lattice rotation map components by a constant value which vanishes during derivative operations, i.e., lattice distortion distribution is insensitive to EBSP<sub>0</sub> choice.<ref name=":9" /><ref name=":10">{{Cite journal |last1=Koko |first1=Abdalrhaman |last2=Tong |first2=Vivian |last3=Wilkinson |first3=Angus J. |author-link3=Angus Wilkinson |last4=Marrow |first4=T. James |author-link4=James Marrow |date=2023 |title=An iterative method for reference pattern selection in high-resolution electron backscatter diffraction (HR-EBSD) |journal=Ultramicroscopy |volume=248 |pages=113705 |arxiv=2206.10242 |doi=10.1016/j.ultramic.2023.113705 |pmid=36871367 |s2cid=249889699}}{{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref>
=== Selecting a reference pattern ===
Line 189:
EBSD and [[digital image correlation]] (DIC) can be used together to analyse the microstructure and deformation behaviour of materials. DIC is a method that uses digital image processing techniques to measure deformation and strain fields in materials.<ref>{{Cite journal |last1=Stinville |first1=J. C. |last2=Callahan |first2=P. G. |last3=Charpagne |first3=M. A. |last4=Echlin |first4=M. P. |last5=Valle |first5=V. |last6=Pollock |first6=T. M. |date=2020 |title=Direct measurements of slip irreversibility in a nickel-based superalloy using high-resolution digital image correlation |journal=Acta Materialia |volume=186 |pages=172–189 |doi=10.1016/j.actamat.2019.12.009 |bibcode=2020AcMat.186..172S |osti=1803462 |s2cid=213631580 |doi-access=free }}</ref> By combining EBSD and DIC, researchers can obtain both crystallographic and mechanical information about a material simultaneously.<ref>{{Cite journal |last1=Charpagne |first1=Marie-Agathe |last2=Strub |first2=Florian |last3=Pollock |first3=Tresa M. |date=2019|title=Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm |journal=Materials Characterization |volume=150 |pages=184–198 |doi=10.1016/j.matchar.2019.01.033 |arxiv=1903.02988 |s2cid=71144677 }}</ref> This allows for a more comprehensive understanding of the relationship between microstructure and mechanical behaviour, which is particularly useful in fields such as materials science and engineering.<ref>{{Cite journal |last1=Zhao |first1=Chong |last2=Stewart |first2=David |last3=Jiang |first3=Jun |last4=Dunne |first4=Fionn P. E. |date=2018 |title=A comparative assessment of iron and cobalt-based hard-facing alloy deformation using HR-EBSD and HR-DIC |journal=Acta Materialia |volume=159 |pages=173–186 |doi=10.1016/j.actamat.2018.08.021 |bibcode=2018AcMat.159..173Z |hdl=10044/1/68967 |s2cid=139436094 |hdl-access=free }}</ref>
DIC can identify regions of strain localisation in a material, while EBSD can provide information about the microstructure in these regions. By combining these techniques, researchers can gain insights into the mechanisms responsible for the observed strain localisation.<ref>{{Cite journal |last1=Orozco-Caballero |first1=Alberto |last2=Jackson |first2=Thomas |last3=da Fonseca |first3=João Quinta |date=2021 |title=High-resolution digital image correlation study of the strain localization during loading of a shot-peened RR1000 nickel-based superalloy |journal=Acta Materialia |volume=220 |pages=117306 |doi=10.1016/j.actamat.2021.117306 |bibcode=2021AcMat.22017306O |s2cid=240539022 |url=https://pure.manchester.ac.uk/ws/files/198822339/210828_ShotP_Manuscript_w_Figures_clean.pdf |access-date=20 March 2023 |archive-date=25 March 2023 |archive-url=https://web.archive.org/web/20230325200439/https://pure.manchester.ac.uk/ws/files/198822339/210828_ShotP_Manuscript_w_Figures_clean.pdf |url-status=live }}</ref> For example, EBSD can be used to determine the grain orientations and boundary misorientations before and after deformation. In contrast, DIC can be used to measure the strain fields in the material during deformation.<ref>{{Cite journal |last1=Ye |first1=Zhenhua |last2=Li |first2=Chuanwei |last3=Zheng |first3=Mengyao |last4=Zhang |first4=Xinyu |last5=Yang |first5=Xudong |last6=Gu |first6=Jianfeng |date=2022 |title=In situ EBSD/DIC-based investigation of deformation and fracture mechanism in FCC- and L12-structured FeCoNiV high-entropy alloys |journal=International Journal of Plasticity |volume=152 |pages=103247 |doi=10.1016/j.ijplas.2022.103247 |s2cid=246553822 }}</ref><ref name=":40">{{Cite journal |last1=Hestroffer |first1=Jonathan M. |last2=Stinville |first2=Jean-Charles |last3=Charpagne |first3=Marie-Agathe |last4=Miller |first4=Matthew P. |last5=Pollock |first5=Tresa M. |last6=Beyerlein |first6=Irene J. |date=2023 |title=Slip localization behavior at triple junctions in nickel-base superalloys |journal=Acta Materialia |volume=249 |pages=118801 |doi=10.1016/j.actamat.2023.118801 |bibcode=2023AcMat.24918801H |osti=2420863 |s2cid=257216017 }}</ref> Or EBSD can be used to identify the activation of different slip systems during deformation, while DIC can be used to measure the associated strain fields.<ref>{{Cite journal |last1=Sperry |first1=Ryan |last2=Han |first2=Songyang |last3=Chen |first3=Zhe |last4=Daly |first4=Samantha H.|author4-link= Samantha Daly |last5=Crimp |first5=Martin A. |last6=Fullwood |first6=David T. |date=2021 |title=Comparison of EBSD, DIC, AFM, and ECCI for active slip system identification in deformed Ti-7Al |journal=Materials Characterization |volume=173 |pages=110941 |doi=10.1016/j.matchar.2021.110941 |s2cid=233839426 |doi-access=free }}</ref> By correlating these data, researchers can better understand the role of different deformation mechanisms in the material's mechanical behaviour.<ref>{{Cite journal |last1=Gao |first1=Wenjie |last2=Lu |first2=Junxia |last3=Zhou |first3=Jianli |last4=Liu |first4=Ling'en |last5=Wang |first5=Jin |last6=Zhang |first6=Yuefei |last7=Zhang |first7=Ze |date=2022|title=Effect of grain size on deformation and fracture of Inconel718: An in-situ SEM-EBSD-DIC investigation |journal=Materials Science and Engineering: A |volume=861 |pages=144361 |doi=10.1016/j.msea.2022.144361 |s2cid=253797056 }}</ref>
Overall, the combination of EBSD and DIC provides a powerful tool for investigating materials' microstructure and deformation behaviour. This approach can be applied to a wide range of materials and deformation conditions and has the potential to yield insights into the fundamental mechanisms underlying mechanical behaviour.<ref name=":40" /><ref>{{Cite journal |last1=Di Gioacchino |first1=Fabio |last2=Quinta da Fonseca |first2=João |date=2015 |title=An experimental study of the polycrystalline plasticity of austenitic stainless steel |journal=International Journal of Plasticity |volume=74 |pages=92–109 |doi=10.1016/j.ijplas.2015.05.012 |doi-access=free }}</ref>
Line 211:
* {{Cite journal |last1=Britton |first1=T. Ben |author-link=Ben Britton |last2=Jiang |first2=Jun |last3=Guo |first3=Y. |last4=Vilalta-Clemente |first4=A. |last5=Wallis |first5=D. |last6=Hansen |first6=L.N. |last7=Winkelmann |first7=A. |last8=Wilkinson |first8=A.J. |author-link8=Angus Wilkinson |date=July 2016 |title=Tutorial: Crystal orientations and EBSD — Or which way is up? |journal=Materials Characterization |volume=117 |pages=113–126 |doi=10.1016/j.matchar.2016.04.008 |s2cid=138070296|ref=none|doi-access=free |hdl=10044/1/31250 |hdl-access=free }}
* {{Cite journal |last1=Charpagne |first1=Marie-Agathe |last2=Strub |first2=Florian |last3=Pollock |first3=Tresa M. |author-link3=Tresa Pollock |date=April 2019 |title=Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm |journal=Materials Characterization |volume=150 |pages=184–198 |doi=10.1016/j.matchar.2019.01.033|arxiv=1903.02988 |s2cid=71144677 |ref=none}}
* {{Cite journal |last1=Jackson |first1=M. A. |last2=Pascal |first2=E. |last3=De Graef |first3=M. |date=2019 |title=Dictionary Indexing of Electron Back-Scatter Diffraction Patterns: a Hands-On Tutorial |url=https://link.springer.com/article/10.1007/s40192-019-00137-4 |journal=Integrating Materials and Manufacturing Innovation |volume=8 |issue=2 |pages=226–246 |doi=10.1007/s40192-019-00137-4|s2cid=182073071 |ref=none|url-access=subscription }}
* {{Cite journal |last=Randle |first=Valerie |author-link=Valerie Randle |date=September 2009 |title=Electron backscatter diffraction: Strategies for reliable data acquisition and processing |journal=Materials Characterization |volume=60 |issue=90 |pages=913–922 |doi=10.1016/j.matchar.2009.05.011|ref=none}}
* {{Cite book |title=Electron Backscatter Diffraction in Materials Science |editor-first1=Adam J. |editor-first2=Mukul |editor-first3=Brent L. |editor-first4=David P. |editor-last1=Schwartz |editor-last2=Kumar |editor-last3=Adams |editor-last4=Field |year=2009 |publisher=Springer New York, New York |isbn=978-0-387-88135-5 |edition=2nd |___location=New York, New York |publication-date=12 August 2009 |doi=10.1007/978-0-387-88136-2|ref=none}}
|