Teoria delle code: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Altri progetti: Aggiunto il parametro "Preposizione" nel template "Interprogetto"
Pergzrv (discussione | contributi)
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti.
 
Riga 30:
[[File:FIFO-LIFO.svg|thumb|Confronto tra tecnica FIFO e LIFO.]]
[[File:Mminfinity-statespace.svg|thumb|upright=1.0|[[Catene di Markov]] per sistemi a coda con stati, transizione di stati e relative probabilità, usata per la modellazione dei sistemi a coda]]
I sistemi a coda sono modellizzabili tramite [[processo markoviano|catene di Markov]] a tempo continuo ossia con [[sistema dinamico|sistemi dinamici]] caratterizzati da <math>N</math> stati, probabilità di stato <math>P(N_i)</math> e [[probabilità di transizione]] da uno stato a un altro uguale al prodotto tra la frequenza di transizione <math>f</math> e l'intervallo di tempo <math>dt,</math> dipendente solo dallo stato presente del sistema e non da quelli precedenti (sistema senza memoria). Lo stato rappresenta la situazione in cui si trova il sistema rispetto a variabili prese come riferimento (in linea di massima non univoche) e l'evoluzione del sistema è mappata con una sequenza di salti fra gli stati stessi. Note le frequenze di transizione, ossia la probabilità di transizione di stato, è possibile derivare le probabilità di stato <math>P(S_i)</math> risolvendo la catena di Markov; dalla conoscenza di queste probabilità si possono poi derivare i parametri prestazionali di interesse quali il traffico smaltito, la probabilità di rifiuto, il tempo di coda, ecc…
 
Definendo il flusso proveniente dallo stato <math>i</math>-esimo verso lo stato <math>k</math>-esimo come il prodotto <math>P(S_k)\cdot q_k,</math> tra la probabilità di stato in <math>k</math> e la frequenza di transizione verso lo stato <math>k,</math> per il calcolo della probabilità di stato si utilizza la condizione espressa dalla [[legge di conservazione]] dei flussi la quale afferma che la somma dei flussi entranti è uguale alla somma dei flussi uscenti da uno stato. Applicando tale principio ad ogni stato si ottiene un sistema di <math>S</math> equazioni in <math>S</math> incognite (le probabilità di stato) tante quante gli stati <math>S;</math> le equazioni non sono tutte indipendenti tra loro, quindi la soluzione del sistema è impossibile (determinante nullo) a meno di sostituire un'equazione con la somma delle probabilità degli stati pari ad uno.
 
Un tipo di catene di Markov sono le catene di nascita e morte dove sono ammesse transizioni solo tra strati "adiacenti" e per i quali è identificabile una linea di taglio di flusso. Un sistema a coda è detto Markoviano se è modellabile tramite una catena di Markov di nascita e morte con processo di arrivo e di servizio di tipo [[esponenziale]] negativo di parametri λ (nascita) e υ (morte) e valori attesi corrispondentemente pari a 1/λ e 1/υ.