Apprendimento federato: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Bot: numeri di pagina nei template citazione |
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti. Etichette: Modifica visuale Modifica da mobile Modifica da web per mobile Attività per i nuovi utenti Suggerito: aggiungi collegamenti |
||
| (5 versioni intermedie di 4 utenti non mostrate) | |||
Riga 1:
L{{'}}'''apprendimento federato'''
L’apprendimento federato permette ai diversi partecipanti di costruire un modello per l’apprendimento automatico comune e robusto, senza lo scambio di qualsiasi dato. L'utilizzo di questa tecnica consente di affrontare problemi critici come la protezione, la sicurezza, e i diritti di accesso ai dati e l’impiego di dati eterogenei. Le principali applicazioni dell’apprendimento federato comprendono vari campi come la difesa, le telecomunicazioni, l’[[IoT]] e la farmaceutica.
Riga 5:
== Definizione ==
L’apprendimento federato ha lo scopo di fornire metodi per addestrare un modello di apprendimento automatico, per esempio le [[Rete neurale artificiale|reti neurali]] profonde, utilizzando i dati locali che sono distribuiti su più nodi senza la necessità dello scambio degli stessi. Il principio generale consiste nell'addestrare modelli locali utilizzando i dati disponibili localmente ai nodi e, attraverso lo scambio dei [[Parametro (programmazione)|parametri]] (ad esempio i pesi di una rete neurale profonda) generare un modello globale.
La principale differenza tra l'apprendimento federato e l'apprendimento distribuito risiede nelle ipotesi formulate sulle proprietà dei set di dati locali<ref name=":1">Federated Optimization: Distributed Optimization Beyond the Datacenter, Jakub Konecny, H. Brendan McMahan, Daniel Ramage, 2015</ref> poiché l'apprendimento distribuito è nato con l'intento di [[Computer performance|parallelizzare la potenza di calcolo]] mentre l'approccio federato ha come intento l'addestramento dei modelli su [[Omogeneità ed eterogeneità|dati eterogenei]]
=== Apprendimento federato centralizzato ===
Riga 96:
* Il set di dati di ciascun nodo può richiedere delle cure regolari;
* L'applicazione di meccanismi di oscuramento dei dati utilizzati per l'addestramento potrebbe consentire a degli utenti malevoli di iniettare [[backdoor]] nel modello globale;<ref>{{Cita pubblicazione|nome=Eugene|cognome=Bagdasaryan|nome2=Andreas|cognome2=Veit|nome3=Yiqing|cognome3=Hua|data=2019-08-06|titolo=How To Backdoor Federated Learning|rivista=arXiv:1807.00459 [cs]|accesso=2020-06-25|url=http://arxiv.org/abs/1807.00459}}</ref>
* La mancanza di accesso ai dati globali per l'addestramento rende più difficile identificare deviazioni indesiderate che possono influenzare la fase di apprendimento, per esempio età, genere, [[orientamento sessuale]];
* La perdita parziale o totale degli aggiornamenti del modello a causa di errori dei nodi possono incidere sul modello globale
Riga 112:
=== Aspetti legali dell'apprendimento federato ===
I quadri giuridici occidentali sottolineano sempre di più la protezione e la tracciabilità dei dati. Il rapporto della [[Casa Bianca]] del 2012<ref>{{Cita pubblicazione|nome=A.|cognome=Anonymous|data=2013-03-01|titolo=Consumer Data Privacy in a Networked World: A Framework for Protecting Privacy and Promoting Innovation in the Global Digital Economy|rivista=Journal of Privacy and Confidentiality|volume=4|numero=2|lingua=en|accesso=2020-06-26|doi=10.29012/jpc.v4i2.623|url=https://journalprivacyconfidentiality.org/index.php/jpc/article/view/623}}</ref> ha raccomandato l'applicazione di un principio di minimizzazione dei dati, che è menzionato nel [[Regolamento generale sulla protezione dei dati|GDPR]] europeo.<ref>Recital 39 of the Regulation (EU) 2016/679 (General Data Protection Regulation)</ref> In alcuni casi, è impossibile trasferire dati da un paese all'altro (ad es. dati genomici), tuttavia a volte i consorzi internazionali sono necessari per i progressi scientifici. In tali casi, l'apprendimento federato offre soluzioni per la formazione di un modello globale nel rispetto dei vincoli di sicurezza.
== Temi di ricerca attuali ==
Riga 141:
==Note==
<references />
* Khademi Nori Milad, Yun Sangseok, Kim Il-Min, Fast Federated Learning by Balancing Communication Trade-Offs (2021). [https://doi.org/10.1109/TCOMM.2021.3083316], [https://arxiv.org/abs/2105.11028].
== Collegamenti esterni ==
* {{Collegamenti esterni}}
* {{cita web|url=https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679|titolo=Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016}}
{{Portale|informatica}}
[[Categoria:Apprendimento automatico]]
| |||