Audio digitale: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
fix
fix
 
Riga 27:
Quindi potenzialmente si possono avere infiniti valori di lettura di tensione per ogni singolo campione. Per completare l'opera di conversione del segnale da analogico in digitale, va ora suddivisa tutto il possibile [[range dinamico]] del segnale in un numero finito di intervalli e ogni singolo intervallo va codificato con un valore digitale ben determinato. Queste due operazioni si chiamano [[quantizzazione (elettronica)|quantizzazione]] e [[codifica di sorgente]]. La quantizzazione in genere suddivide il range dinamico del segnale in un numero di intervalli potenza del due (2^n intervalli), in maniera tale che ogni singolo campione cadrà inevitabilmente in uno degli intervallini quantizzati e potrà così essere codificato digitalmente con n bit. I valori più ricorrenti di digitalizzazione attualmente usati vanno da un minimo di 8 bit per campione in campo telefonico (range dinamico del segnale suddiviso in 256 intervallini), fino a 20 e più bit per campione (range dinamico del segnale suddiviso in un milione e più di intervallini).
 
Naturalmente all'aumentare del numero dei bit per campione aumenta la fedeltà del segnale campionato alla forma d'onda originale e si riduce l'imprecisione introdotta dalla quantizzazione (rumore di quantizzazione), ma va osservato che già 8 bit per campione quasi basterebbero per soddisfare i vecchi criteri di [[alta fedeltà]] (''HiFi''). La serie numerica che così discende è detta segnale audio digitale e contiene in sé tutte le informazioni necessarie per ricostruire la forma elettrica originale, che a sua volta era l'immagine quasi perfetta della forma d'onda acustica che l'aveva originata. Volendo, si potrebbe quindi ora procedere alla sua conversione da digitale ad analogica con convertitori D/A, per riottenere la forma elettrica originale, che una volta inviata ad un altoparlante riproduce il suono originario.
 
Tutto questo processo costa in termini di introduzione di rumore vario, ma con le moderne tecniche questo può facilmente essere tenuto sotto una soglia in genere accettabile. Un ultimo passo è in genere fatto in questo settore. Il segnale audio digitale prodotto dai convertitori A/D è in genere codificato con un certo numero di bit per ogni campione e così una registrazione audio di 60 secondi campionata a 44.100 campioni al secondo, con ogni campione codificato con 16 bit, dà per risultato una sequenza di 44.100 campioni al secondo per 60 secondi, pari a 2.646.000 campioni, che vanno ora moltiplicati per 16 bit per campione, ottenendo una serie di 42.336.000 bit. Questo segnale audio digitale così codificato è detto “raw”, cioè grezzo. Un secondo livello di codifica è ora possibile, che consenta di [[Compressione audio|comprimere]] le informazioni in sequenze numeriche più corte e che occupino meno bit per ogni secondo di conversione. Con le moderne tecniche di codifica si arriva a comprimere il suono in maniera molto efficace, come ad esempio negli standard [[MP3]] o [[vorbis]], tanto usati per diffondere musica e suoni in generale.
Riga 49:
* [[Teorema del campionamento]]
* [[Quantizzazione (elettronica)]]
* [[Alta fedeltà]] (''HiFi'')
* [[Elaborazione numerica dei segnali]]
* [[Codifica di sorgente]]