Numero irrazionale: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica Etichette: Annullato Modifica visuale |
Annullata la modifica 142613008 di Stefano Borelli (discussione) meglio la congiunzione Etichetta: Annulla |
||
| (20 versioni intermedie di 14 utenti non mostrate) | |||
Riga 1:
In [[matematica]], un '''numero irrazionale''' è un [[numero reale]] che non è un [[numero razionale]], cioè non può essere scritto come una [[frazione (matematica)|frazione]] ''a / b'' con ''a'' e ''b'' [[numeri interi|interi]] e ''b'' diverso da [[zero|0]]. I numeri irrazionali sono esattamente quei numeri la cui
L'introduzione di questi numeri nel panorama matematico è iniziata con la scoperta da parte dei greci delle grandezze incommensurabili, ossia prive di un sottomultiplo comune.
Riga 5:
Alcuni numeri irrazionali sono [[numero algebrico|numeri algebrici]] come <math>\sqrt{2}</math> (la [[radice quadrata]] di [[due|2]]) e <math>\sqrt[3]{5}</math> (la [[radice cubica]] di [[cinque|5]]); altri sono [[numero trascendente|numeri trascendenti]] come [[Pi greco|π]] ed [[E (costante matematica)|e]].
== Storia ==
La scoperta dei numeri irrazionali viene tradizionalmente attribuita a [[Pitagora]], o più precisamente al [[Scuola pitagorica|pitagorico]] [[Ippaso di Metaponto]],<ref>Kurt von Fritz, "The discovery of incommensurability by Hippasus of Metapontum", ''Annals of Mathematics'', Second Series, Vol. 46, No. 2 (April, 1945), pp. 242-264.</ref> che produsse una argomentazione (probabilmente con considerazioni geometriche) dell'irrazionalità della [[radice quadrata di 2]]. Secondo la tradizione Ippaso scoprì i numeri irrazionali mentre tentava di rappresentare la radice quadrata di 2 come frazione (vedi la dimostrazione sotto). Tuttavia Pitagora credeva nell'assolutezza dei numeri, e non poteva accettare l'esistenza dei numeri irrazionali. Egli non era in grado di confutare la loro esistenza con la logica, ma le sue credenze non potevano tollerarne l'esistenza e, secondo una leggenda, per questo condannò Ippaso a morire annegato.
Il XVI secolo vide infine l'accoglienza favorevole da parte della comunità matematica dei numeri negativi, interi e [[frazione (matematica)|frazionari]].
Le [[frazione continua|frazioni continue]], strettamente collegate ai numeri irrazionali (e dovute a Cataldi, 1613), furono prese in considerazione da
I numeri trascendenti furono per la prima volta distinti dagli irrazionali algebrici da Kronecker. [[Johann Heinrich Lambert|Lambert]] provò (1761) che <math>\pi</math> non può essere razionale, e che ''e''<sup>''n''</sup> è irrazionale se ''n'' è razionale (eccetto ''n'' = 0), dimostrazione, comunque, che lasciò molto a desiderare. [[Adrien-Marie Legendre|Legendre]] (1794) completò la dimostrazione di Lambert, e mostrò che <math>\pi</math> non è la radice quadrata di un numero razionale. [[Joseph Liouville]] (1840) mostrò che né ''e'' né ''e''² possono essere radici di un'[[equazione quadratica]] intera. Ma l'esistenza di numeri trascendenti fu per la prima volta stabilita da Liouville (1844, 1851); una proposizione più forte, che afferma che gli irrazionali e i trascendenti hanno [[cardinalità]] maggiore di quella degli algebrici, fu trovata da [[Georg Cantor]] nel 1873. [[Charles Hermite]] (1873) provò per primo la trascendenza di ''e'', e [[Ferdinand von Lindemann]] (1882), partendo dalle conclusioni di Hermite, mostrò lo stesso per <math>\pi</math>. La dimostrazione di Lindemann fu molto semplificata da Weierstrass (1885), e ulteriormente da [[David Hilbert]] (1893); infine fu resa quasi elementare da [[Adolf Hurwitz|Hurwitz]] e [[Paul Gordan|Gordan]].
Riga 18:
=== Irrazionalità della radice quadrata di 2 ===
Una dimostrazione dell'irrazionalità della [[radice quadrata di due]] (trasmessa da [[Archita]]) è la seguente, che procede [[Dimostrazione per assurdo|per assurdo]]
Supponiamo che <math>\sqrt{2}</math> sia un numero razionale. Ciò comporta che esistono due interi ''a'' e ''b'' [[interi coprimi|privi di fattori comuni]] tali che <math>\frac{a}{b} = \sqrt{2}</math>. Elevando al quadrato ad ambo i membri, si ha <math>\frac{a^2}{b^2} =2</math>, cioè <math>a^2=2b^2</math>.
Questo implica che
Poiché il quadrato di un [[Numeri pari e dispari|numero pari]] è pari (<math>(2k)^2=2(2k^2)</math>), mentre il quadrato di un numero dispari è dispari (<math>(2k+1)^2=2(2k^2+2k)+1</math>), ne deriva che ''a'' è pari, ossia esiste ''k'' intero tale che ''a''=2''k''.
Sostituendo abbiamo
:<math>a^2=(2k)^2=4k^2=2b^2 \Longrightarrow b^2=2k^2</math>
cioè risulta che anche ''b'' è pari
Questa dimostrazione si può generalizzare per dimostrare che qualunque radice di qualunque [[numero naturale]] è un numero naturale o è irrazionale.
Un'altra dimostrazione per assurdo che dimostra l'irrazionalità di <math>\sqrt 2</math> è meno conosciuta ma interessante. Essa procede osservando che se <math>\sqrt 2 = \frac{m}{n}</math> allora sfruttando il fatto che <math>2 = \frac{m^2}{n^2}</math> si ottiene <math>\sqrt 2 = \frac{2n - m}{m - n}</math>, quindi una frazione ai minimi termini viene ridotta in termini ancora minori. Questa è una contraddizione se <math>n</math> e <math>m</math> sono interi positivi, dunque l'
=== Irrazionalità dei logaritmi ===
Riga 74:
== Numeri irrazionali ed espansioni decimali ==
Spesso si crede che i matematici definiscano "numero irrazionale" in termini di [[espansione decimale]], chiamando un numero ''irrazionale'' se la sua espansione decimale non si ripete né termina. Nessun matematico utilizza tale definizione, in quanto la scelta della [[Sistema di numerazione|base 10]] sarebbe arbitraria e la definizione tipica è più semplice e più motivata. Tuttavia è vero che un numero razionale si può esprimere nella forma <math>n /m</math>, dove <math>n</math> ed <math>m</math> sono [[Numero intero|interi]], [[se e solo se]] la sua espansione decimale si ripete o è finita. Quando l'[[algoritmo di divisione]] ("in colonna") viene applicato alla divisione di <math>n</math> per <math>m</math>, sono possibili solo <math>m</math> [[Resto|resti]]. Se <math>0</math> appare come resto, l'espansione decimale si conclude. Se <math>0</math> non compare, allora l'algoritmo può richiedere al massimo <math>m - 1</math> passi senza usare ogni resto più di una volta. Dopodiché, un resto deve ricomparire, e quindi l'espansione decimale si ripete. Al contrario, supponiamo di essere di fronte ad un decimale periodico, ad esempio:
:<math>A=0,7\,162\,162\,162\,\dots</math>
Riga 100:
== Numeri di cui non è accertata l'irrazionalità ==
{{senza fonte|Non si sa ancora se <math>\pi + e</math> o <math>\pi - e</math> siano irrazionali o no. Infatti, non c'è nessuna coppia di interi non nulli
== Topologia ==
Riga 114:
== Altri progetti ==
{{interprogetto|preposizione=sui|etichetta=numeri irrazionali}}
== Collegamenti esterni ==
* {{Collegamenti esterni}}
* {{FOLDOC|irrational number|irrational number}}
{{algebra}}
| |||