Gravità quantistica a loop: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti.
Etichette: Modifica visuale Modifica da mobile Modifica da web per mobile Modifica da mobile avanzata Attività per i nuovi utenti Suggerito: aggiungi collegamenti
 
(300 versioni intermedie di oltre 100 utenti non mostrate)
Riga 1:
La '''gravità quantistica a loop''' ('''LQG''', dal termine inglese ''Looploop Quantumquantum Gravitygravity'') è, conosciuta anche coi termini di '''gravità a loop''', '''geometria quantistica''' e '''relatività generale canonica quantistica'''., E'è statauna proposta quale[[Fisica teorica|teoria quantisticafisica]] dellodi [[spazio-tempogravità quantistica]], cheovvero cercauna di unificare le apparentemente incompatibili teorie dellateoria [[meccanica Quanto|quantistica]] e delladello [[relatività generalespazio-tempo]]. Questache teoria fa partecerca di una famiglia di teorie chiamata ''gravità canonica quantistica''. E' stata sviluppata in parallelo conunificare la [[quantizzazionemeccanica a loopquantistica]], unae struttura rigorosa della quantizzazione non perturbativa della teoria di gauge ala [[diffeomorfismorelatività generale]] invariante. In parole semplici è una teoria quantistica della gravità in cui il vero spazio in cui accadono tutti gli altri fenomeni fisici è quantizzato.
 
== Incompatibilità tra meccanica quantistica e relatività generale ==
{{Fisica}}
{{vedi anche|Gravità quantistica}}
 
La [[teoria quantistica dei campi]] applicata in uno spazio-tempo curvo (non [[Spazio-tempo di Minkowski|minkowskiano]]) ha dimostrato che alcuni dei suoi assunti fondamentali non possono essere conservati. In particolare il vuoto, quando esiste, appare dipendere dalla traiettoria dell'osservatore attraverso lo spazio-tempo ([[effetto Unruh]]).
La LQG è una teoria dello spazio-tempo che si fonda sul concetto di quantizzazione dello spazio-tempo mediante una teoria matematicamente rigorosa della teoria della quantizzazione a loop. Essa conserva gli aspetti fondamentali della relatività generale, come ad esempio l'invarianza per trasformazioni di coordinate, ed allo stesso tempo utilizza la quantizzazione dello spazio e del tempo alla '''scala di Plank''' caratteristica della [[meccanica quantistica]]. In questo senso essa
combina la relatività generale e la meccanica quantistica? Tuttavia la LQG non è una ipotetica ''[[Teoria del Tutto]]'', perché non affronta il problema di dare una descrizione unificata di tutte le forze. La LQG è solo una teoria che descrive le proprietà quantistiche della gravità, e descrive le proprietà quantistiche dello spazio tempo, e non un tentativo di scrivere la teoria del mondo.
 
Vi sono state in passato due reazioni all'apparente contraddizione tra la teoria dei quanti e l'indipendenza dal background della relatività generale. La prima è che l'interpretazione geometrica della relatività generale non è fondamentale ma "risultante"', la seconda è che l'indipendenza dal background è fondamentale e la meccanica quantistica necessita di essere generalizzata per definire dove non vi è un tempo stabilito a priori. La LQG va nella seconda direzione, è cioè un tentativo di formulare una teoria quantistica indipendente dal background.
Esistono altre teorie della gravità quantistica elencate sotto la voce ''[[Gravità quantistica]]''. I critici della LQG fanno spesso riferimento al fatto che la teoria non predice l'esistenza di ulteriori dimensioni dello sapzio tempo (oltre alle 4 note), nè la supersimmetira. La risposta dei fautori della LQG è che allo stato attuale, nonostante ripetute ricerche sperimentali, non vi è alcuna evidenza sperimentale né di altre dimensioni, né di particelle supersimmetriche; quindi sia le dimensioni addizionali dello spazio tempo, sia la supersimmetria devono essere considerate ipotesi speculative non provate.
 
In sintesi, nelle teorie della [[relatività ristretta]] e della [[Relatività generale|gravitazione]] la geometria di riferimento è continua: ragionando in una sola dimensione (anziché in 3), dati due punti distinti A e B sicuramente esiste un punto A' intermedio tra A e B, un punto A<nowiki>''</nowiki> intermedio tra A e A', un punto intermedio A<nowiki>''' tra A e A''</nowiki> e così via all'infinito. Nella LQG, invece, la geometria di riferimento è quantizzata: facendo la stessa operazione di suddivisione tra A e B, tra A e A' e tra A e A<nowiki>''</nowiki> si arriverà alla situazione di avere due punti A e A^ tra i quali non è presente nessun altro punto. Tornando alle tre dimensioni spaziali, ciò significa che partendo da un volume e suddividendolo in volumetti sempre più piccoli, c'è un valore minimo di volume non ulteriormente divisibile<ref>{{Cita web |url=http://www.einstein-online.info/elementary/quantum/loops |titolo=Loop quantum gravity — Einstein Online<!-- Titolo generato automaticamente --> |accesso=16 ottobre 2013 |urlarchivio=https://web.archive.org/web/20131007220320/http://www.einstein-online.info/elementary/quantum/loops |dataarchivio=7 ottobre 2013 |urlmorto=sì }}</ref>.
== Gravità quantistica a loop in generale e le sue aspirazioni ==
 
== Storia ==
{{Meccanica quantistica}}
Nel 1986 il fisico [[india]]no [[Abhay Ashtekar]] ha riformulato le equazioni di campo della relatività generale usando ciò che oggi è conosciuto col nome di [[variabili di Ashtekar]], una variante particolare della teoria di Einstein-Cartan con una connessione complessa. Nella formulazione di Ashtekar i campi fondamentali sono una regola per il trasporto parallelo (tecnicamente una connessione) e una struttura di coordinate (detta ''vierbein'') a ogni punto.
 
Dal momento che la formulazione di Ashtekar era indipendente dal background, è stato possibile utilizzare i loop di Wilson come base per la quantizzazione non perturbativa della gravità. L'invarianza del [[diffeomorfismo]] esplicito (spaziale) dello [[Vuoto (fisica)|stato di vuoto]] gioca un ruolo essenziale nella regolarizzazione degli stati del loop di Wilson.
I maggiori successi della gravità quantistica a loop sono:
# è una quantizzazione non perturbativa della geometria a 3 dimensioni, con operatori quantizzati di area e di volume;
# include il calcolo dell'[[entropia]] dei [[buchi neri]];
# è basata su un formalismo matematico rigoroso.
La teoria ammette anche una formulazione covariante, chiamata a "schiuma di spin" (spinfoam).
 
Intorno al 1990 [[Carlo Rovelli]] e [[Lee Smolin]] hanno ottenuto una base esplicita degli stati della geometria quantistica che è stata denominata [[rete di spin]]. In questo contesto le reti di spin si sono presentate come una generalizzazione dei loop di Wilson necessarie per trattare i loop che si intersecano reciprocamente. Dal punto di vista matematico le reti di spin sono correlate alla teoria del gruppo di rappresentazione e possono essere usate per costruire invarianti di nodi come il polinomiale di Jones.
== L'incompatibilità tra meccanica quantistica e relatività generale ==
(vedi anche ''[[gravità quantistica]]'').
 
Divenendo strettamente correlata alla teoria quantistica topologica dei campi e alla teoria della rappresentazione di gruppo, la LQG è per la maggior parte costruita a un livello rigoroso di fisica matematica.
La teoria quantistica dei campi applicata in uno spazio-tempo curvo (quindi non mikowskiano) ha dimostrato che alcuni dei suoi assunti fondamentali non possono essere riportati. In particolare, il vuoto, quando esiste, appare dipendere dalla traiettoria dell'osservatore attraverso lo spazio-tempo (effetto Unruh).
 
== Princìpi fondamentali ==
Vi sono state, in passato, due reazioni all'apparente contraddizione tra la teoria dei quanti e l'indipendenza dallo sfondo della relatività genereale. La prima è che l'iterpretazione geometrica della relatività generale non è fondamentale ma ''"risultante"''. La seconda è che l'indipendenza dallo sfondo è fondamentale e la meccanica quantistica necessita di essere generalizzata per definire dove non vi è un tempo stabilito a priori.
La gravità quantistica a loop fa parte di una famiglia di teorie chiamata ''gravità canonica quantistica'' ed è stata sviluppata in parallelo con la [[quantizzazione a loop]], una struttura rigorosa della quantizzazione non perturbativa della [[teoria di gauge]] a [[diffeomorfismo]] invariante. In parole più semplici è una teoria quantistica della gravità nella quale lo spazio reale in cui accadono i fenomeni fisici, o [[Evento (fisica)|eventi]], è [[Quantizzazione (fisica)|quantizzato]] (vedi anche più avanti al secondo paragrafo). Secondo questa teoria l'universo è costituito da anelli (in inglese ''loop'') delle dimensioni infinitesime di 10<sup>−35</sup> metri, ossia dieci miliardesimi di miliardesimi di miliardesimi di nanometri. Questi anelli possono contenere una certa quantità di energia che non può mai diventare infinita come in una [[singolarità gravitazionale]], esclusa dalla teoria.
 
Essa conserva gli aspetti fondamentali della relatività generale, come ad esempio l'invarianza per trasformazioni di coordinate, e allo stesso tempo utilizza la quantizzazione dello spazio e del tempo alla [[scala di Planck]], caratteristica della meccanica quantistica; in questo senso combina le due teorie, tuttavia non è una ipotetica [[teoria del tutto]] poiché non dà una descrizione unificata di tutte le [[forze fondamentali]], ma descrive unicamente le proprietà quantistiche dello spaziotempo, e quindi della gravità.
La LQG è un tentativo di formulare una teoria quantistica indipendente dallo sfondo.
I critici della LQG fanno spesso riferimento al fatto che non predice l'esistenza di ulteriori dimensioni dello spazio tempo, né la [[supersimmetria]]. La risposta dei suoi autori è che allo stato attuale, nonostante ripetute ricerche sperimentali, non vi è alcuna evidenza di altre dimensioni né di particelle supersimmetriche, che devono essere considerate solo ipotesi speculative.
I maggiori successi della gravità quantistica a loop sono:
# è una quantizzazione non perturbativa della geometria a 3 dimensioni, con operatori quantizzati di area e di volume;
# include il calcolo dell'[[Entropia (termodinamica)|entropia]] dei [[buchi neri]];
# è basata su un formalismo matematico rigoroso.
 
La teoria ammette anche una formulazione covariante, chiamata [[schiuma di spin]] (spinfoam).
== Storia della LQG ==
 
== I costituenti della LQG ==
Nel 1986 il fisico Abhay Ashtekar (nato il 5 Luglio 1949 in India e oggi attivo presso la Penn State Univerisity) ha riformulato le equazioni di campo della relatività generale di [[Albert Einstein|Einstein]] usando ciò che oggi è conosciuto col nome di '''variabili di Ashtekar''', una variante particolare della teoria di Einstein Cartan con una connessione complessa. Nella formulazione, di Ashtekar i campi fondamentali sono una regola per il trasporto parallelo (tecnicamente, una connessione) ed una struttura di coordinate (dette un ''vierbein'') ad ogni punto. Dal momento che la formulazione di Ashtekar era indipendente dallo sfondo, è stato possibile utilizzare i '''loop di Wilson''' come base per la quantizzazione non perturbativa della gravità. L'invarianza del [[diffeomorfismo]] esplicito (spaziale) dello [[Vuoto (fisica)|stato di vuoto]] gioca un ruolo essenziale nella regolarizzazione degli stati del loop di Wilson.
=== Quantizzazione a loop ===
 
Il cuore della gravità quantistica a loop è rappresentato da una struttura per la quantizzazione non perturbativa delle teorie di gauge a diffeomorfismo invariante che può essere chiamata quantizzazione a loop. Originalmente sviluppata per quantizzare il vuoto della relatività generale in 3+1 dimensioni, il formalismo matematico aiuta la dimensionalità arbitraria dello spazio-tempo, i [[Fermione|fermioni]] (Baez e Krasnov), un [[gruppo di gauge]] arbitrario (o anche un gruppo quantistico) e la [[supersimmetria]] (Smolin) e porta alla quantizzazione della [[cinematica]] delle corrispondenti teorie di gauge a diffeomorfismo invariante. Rimane ancora molto lavoro da svolgere riguardo alla dinamica, al limite classico ed al principio di corrispondenza, necessari per effettuare esperimenti.
Intorno al 1990 [[Carlo Rovelli]] e Lee Smolin hanno ottenuto una base esplicita degli stati della geometria quantistica che è stata denominata [[reti di spin]]] di Penrose. In questo contesto le reti di spin si sono presentate come una generalizzazione dei loop di Wilson necessarie per trattare i loop che si intersecano reciprocamente. Dal punto di vista matematico le reti di spin sono correlate alla teoria del gruppo di rappresentazione e possono essere usate per costruire invarianti di nodi come il polinomiale di Jones.
 
La quantizzazione a loop risulta dall'applicazione della quantizzazione C*-algebrica di un'algebra non canonica delle osservabili di gauge invarianti classiche. ''Non canonica'' significa che le osservabili di base quantizzate non sono [[coordinate generalizzate]] né i loro momenti coniugati. Invece vengono usati l'algebra generata dalle osservabili di reti di spin (costruiti da olonomi) e flussi di campi di forza.
Divenendo strettamente correlata alla teoria quantistica topologica dei campi e alla teoria della rappresentazione di gruppo, la LQG è per la maggior parte costruita ad un livello rigoroso di fisica matematica.
 
Le tecniche di quantizzazione a loop sono particolarmente utili nel trattare le teorie topologiche quantistiche di campo dove esse danno corpo a modelli ''state-sum/spin-foam'' come il modello Turaev-Viro della relatività generale a 2+1 dimensioni. Una delle più conosciute teorie è la cosiddetta teoria BF in 3+1 dimensioni perché la relatività generale classica può essere formulata come una teoria BF con costrizione, e si spera che una quantizzazione significativa della gravità possa derivare dalla teoria perturbativa dei modelli BF a schiuma di spin.
 
=== Invarianza di Lorentz ===
== I costituenti della LQG ==
 
La LQG è una quantizzazione della classica teoria [[lagrangiana]] di campo che è equivalente alla nota teoria di Einstein-Cartan nel punto in cui permette che le equazioni di moto descrivano la relatività generale con torsione. Si può quindi dire che la LQG rispetta l'[[invarianza di Lorentz]] a livello ''locale''. L'invarianza di Lorentz ''generale'' è rotta nella LQG così come nella relatività generale. Si può ottenere una [[costante cosmologica]] positiva nella LQG sostituendo il gruppo di Lorentz con il corrispettivo gruppo quantistico.
 
=== Invarianza per diffeomorfismi e indipendenza dal background ===
=== Quantizzazione a loop ===
 
L'invarianza per [[diffeomorfismo|diffeomorfismi]], o ''covarianza generale'', è l'invarianza delle leggi fisiche sotto trasformazioni di coordinate arbitrarie, ed è anche una delle caratteristiche della relatività generale. La LQG conserva questa simmetria richiedendo che gli stati fisici siano invarianti sotto i generatori dei diffeomorfismi. L'interpretazione di queste condizioni è ben conosciuta nei riguardi dei diffeomorfismi spaziali puri; comunque la comprensione dei diffeomorfismi che coinvolgono il tempo (la ''costrizione hamiltoniana'') è più debole perché è in relazione con la dinamica e con il cosiddetto [[problema del tempo]] della relatività generale ed inoltre la struttura di calcolo generalmente accettata per descrivere questa costrizione è ancora da trovare.
Il cuore della gravità quantistica a loop è rappresentato da una struttura per la quantizzazione non perturbativa delle teorie di gauge a diffeomorfismo invariante che può essere chiamata quantizzazione a loop. Originalmente sviluppata al fine di quantizzare il vuoto della relatività generale in 3+1 dimensioni, il formalismo matematico può aiutare la dimensionalità arbitraria dello spazio-tempo, i [[Fermione|fermioni]] (Baez e Krasnov), un [[gruppo di gauge]] arbitrario (o anche un gruppo quantistico) e la [[supersimmetria]] (Smolin) e porta alla quantizzazione della [[cinematica]] delle corrispondenti teorie di gauge a diffeomorfismo invariante. Rimane ancora molto lavoro da svolgere riguardo la dinamica, il limite classico ed il principio di corrispondenza, tutti necessari, in un modo o nell'altro, per poter effetuare esperimenti.
 
In termini semplicistici e trascurando per un attimo l'[[Invarianza di gauge|invarianza per trasformazioni di gauge]], l'indipendenza dal background è una proprietà che esprime la corrispondenza biunivoca tra la distribuzione spaziotemporale delle sorgenti del [[campo gravitazionale]] e il campo che esse generano: dato uno dei due si ottiene automaticamente l'altro. Usando termini più corretti: la [[Tensore metrico|metrica]] e il [[Tensore energia momento|tensore energia-impulso]] sono legati dalle [[Equazioni di campo di Einstein|equazioni di campo]], senza che sia necessaria nessuna ipotesi particolare né sulla forma della metrica né su quella di <math>T_{\mu\nu}</math>.&nbsp;
La quantizzazione a loop è il risultato dell'applicazione della quantizzazione C*-algebrica di un'algebra non canonica delle osservabili di gauge invarianti classiche. ''Non canonica'' significa che le osservabili di base quantizzate non sono coordinate generalizzate nè i loro momenti coniugati. Invece vengono usati l'algebra generata dalle osservabili di reti di spin (costruiti da olonomi) e flussi di campi di forza.
 
Che l'[[invarianza di Lorentz]] sia rotta o no al limite alle basse energie della LQG, la teoria è formalmente indipendente dal background. Le equazioni della LQG non sono incluse oppure presuppongono spazio e tempo (eccetto per la sua topologia che non può essere modificata), ma si ritiene con una certa ragionevolezza che aumentino lo spazio ed il tempo a distanze maggiori comparate alla lunghezza di Planck. Non è stato ancora dimostrato che la descrizione che la LQG dà dello spazio-tempo al livello di [[scala di Planck]] possieda un limite del continuum come descritto dalla relatività generale con eventuali correzioni quantistiche.
Le tecniche di quantizzazione a loop sono particolarmente utili nel trattare le teorie topologiche quantistiche di campo dove esse danno corpo a modelli ''state-sum/spin-foam'' come il modello Turaev-Viro della relatività generale a 2+1 dimensioni. Una delle più conosciute teorie è la cosiddetta teoria BF in 3+1 dimensioni perche la relatività generale classica può essere formulata come una teoria BF con costrizione, e si spera che una quantizzazione significativa della gravità possa derivare dalla teoria perturbativa dei modelli BF a schiuma di spin.
 
== Problemi aperti ==
Nessuna teoria della gravità quantistica ([[teoria delle stringhe|stringhe]], loops o altre) produce predizioni univoche che possano essere sottoposte a verifiche sperimentali. Una speranza in tal senso è venuta dalla possibilità di osservazioni astrofisiche di violazione dell'[[invarianza di Lorentz]], ma è noto da tempo che la gravità quantistica a loop non porta necessariamente alla violazione dell'invarianza di Lorentz (vedi per esempio Rovelli e Speziale 2003<ref>[[Carlo Rovelli]], Simone Speziale, [https://arxiv.org/abs/gr-qc/0205108 ''Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction''], ''[[Physical Review]]'' D 67, 064019 (2003) {{DOI|10.1103/PhysRevD.67.064019}}</ref>) e quindi osservazioni di questo tipo, come per esempio quelle del [[Fermi Gamma-ray Space Telescope]], non possono essere considerate argomenti a favore o a sfavore della teoria.
 
== Critiche dei fautori della Teoria delle stringhe ==
=== Invarianza di Lorentz ===
La LQG è criticata dai fautori della [[teoria delle stringhe]] per molti motivi.
 
La critica più forte si rivolge al fatto che non esiste ancora una teoria efficace della LQG e quindi non è possibile verificare se essa riproduca veramente la relatività generale a basse energie. Dunque, non è nemmeno chiaro se riesca a riprodurre tutti i fenomeni già descritti dalla teoria di Einstein. Recentemente, tuttavia, è stato possibile derivare dalla teoria la fenomenologia delle [[onde gravitazionali]]<ref>{{collegamento interrotto|[https://arxiv.org/abs/gr-qc/09054082]}}</ref> e la cosmologia standard<ref>{{collegamento interrotto|[https://arxiv.org/abs/gr-qc/10033483]}}</ref>. Le indicazioni secondo cui il limite classico della teoria sarebbe la relatività generale sono dunque forti.
La LQG è una quantizzazione della classica teoria [[lagrangiana]] di campo che è equivalente alla nota teoria di Einstein-Cartan nel punto in cui permette che le equazioni di moto descrivano la relatività generale con torsione. Si può quindi dire che la LQG rispetta l'invarianza di Lorentz a livello ''locale''. L'invarianza di Lorentz ''generale'' è rotta nella LQG così come nella relatività generale. Si può ottenre una [[costante cosmologica]] positiva nella LQG sostituendo il gruppo di Lorentz con il corrispettivo gruppo quantistico.
 
È stato anche osservato che il metodo di quantizzazione è tale che i modi veramente quantizzati portano a una teoria topologica e dunque lontana dalla realtà, ma si tratta di un equivoco. La teoria può essere costruita modificando modelli topologici, ma non è una teoria topologica.
 
La LQG risolve i problemi di divergenza ultravioletta delle [[Gravità semiclassica|teorie semiclassiche]] standard. Non ci sono termini divergenti all'ultravioletto negli operatori di volume e nel vincolo Hamiltoniano. Tuttavia, nella teoria esistono divergenze infrarosse, e non è ancora chiaro come trattarle.
=== Invarianza del diffeomorfismo e indipendenza dallo sfondo ===
 
Una critica alla teoria, comune tra i fautori della teoria della stringhe, è che la versione della teoria della gravità quantistica a loop basata sulle schiume di spin può violare l'unitarietà. È vero che la teoria viola l'unitarietà, nel senso che non esiste nella teoria un [[Gruppo (matematica)|gruppo]] ad un parametro di trasformazioni unitarie che dà l'evoluzione temporale, né una matrice S unitaria. L'assenza di queste strutture stupisce e lascia sconcertato chi viene dal mondo delle stringhe, perché abituato a pensare alla fisica in termini di spazio tempo piatto. Ma l'assenza di queste strutture è implicata dalla relatività generale, nella quale, in generale, non esiste uno spazio piatto asintotico o una simmetria per traslazione nel tempo. L'unitarietà, nel senso di coerenza dell'interpretazione probabilistica della teoria, è ovviamente rispettata dalla gravità quantistica a loop.
La '''covarianza generale''' (conosciura anche col termine di invarianza del [[diffeomorfismo]]) è l'invarianza delle leggi fisiche (ad esempio le equazioni della relatività generale) sotto trasformazioni di coordinate arbitrarie. Questa simmetria è una delle caratteristiche della relatività generale. La LQG conserva questa simmetria richiedendo che gli stati fisici siano invarianti sotto i generatori dei diffeomorfismi. L'interpretazione di queste condizioni è ben conosciuta nei riguardi dei diffeomorfismi spaziali puri; comunque la comprensione dei diffeomorfismi che coinvolgono il tempo (la ''costrizione hamiltoniana'') è più debole perché è in relazione con la dinamica e con il cosiddetto [[problema del tempo]] della relatività generale ed inoltre la struttura di calcolo generalmente accettata per descrivere questa costrizione è ancora da trovare.
 
== Note ==
Se l'ivarianza di Lorentz sia rotta o no al limite alle basse energie della LQG, la teoria è formalmente indipendente dallo sfondo. Le equazioni della LQG non sono incluse oppure presuppongono spazio e tempo (eccetto per la sua topologia che non può essere modificata), ma si ritiene con una certa ragionevolezza che aumentino lo spazio ed il tempo a distanze maggiore comparate alla lunghezza di Planck. Non è stato ancora dimostrato che la descrizione che la LQG dà dello spazio-tempo al livello di scala planckiana
<references/>
possieda un limite del continuum come descitto dalla relatività generale con eventuali correzioni quantistiche.
 
== ProblematicheBibliografia ==
; Libri divulgativi
 
* [[Jim Baggott]], ''Quanti di spazi''o, Adelphi Edizioni, 2022
Al momento attuale non esistono dati sperimentali che convalidino o confutino alcun aspetto della LQG. Questo è un problema che affligge tutte le teorie della gravità quantistica, per esempio la teoria delle stringhe.
 
* [[Carlo Rovelli]], ''La realtà non è come ci appare'', Raffaello Cortina Editore, 2014
La LQG è criticata dai fautori della [[teoria delle stringhe]] che ritengono che il problema della gravità quantistica possa essere risolto solo insieme al problema dell'unificazione di tutte le forze. Se la teoria delle stringhe o la [[teoria M]] sono vicine ad una teoria che descrive completamente il mondo fisico, perché studiare la sola gravità? I fautori della LQG rispondono che la teoria delle stringhe è altrettanto ipotetica e non confermata della LQG, e che comunque non risolve il problema di dare una descrizione fondamentale delle proprietà quantistiche dell spazio e del tempo, problema a cui la LQG, invece, offre una possibile soluzione.
* [[Martin Bojowald]], ''Prima del Big Bang: Storia completa dell'universo'', Giunti 2011
Solo il tempo e le ricerche sperimentali diranno chi ha ragione.
* Lee Smolin, ''L'Universo senza stringhe. Fortuna di una teoria e turbamenti della scienza'', [[Giulio Einaudi Editore|Einaudi]], 2007
* [[Lee Smolin]], ''Three Roads to Quantum Gravity''
; Libri introduttivi universitari
* [[Carlo Rovelli]] e Francesca Vidotto, ''Covariant Loop Quantum Gravity'', Cambridge university Press, 2014; [http://www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf draft scaricabile] {{Webarchive|url=https://web.archive.org/web/20171118095934/http://www.cpt.univ-mrs.fr/~rovelli/IntroductionLQG.pdf |date=18 novembre 2017 }}
* Rodolfo Gambini and Jorge Pullin, ''A First Course in Loop Quantum Gravity'', Oxford University Press, 2011
* [[Carlo Rovelli]], ''Quantum Gravity'', Cambridge University Press (2004); [http://www.cpt.univ-mrs.fr/~rovelli/book.pdf bozza online] {{Webarchive|url=https://web.archive.org/web/20110514004841/http://www.cpt.univ-mrs.fr/~rovelli/book.pdf |date=14 maggio 2011 }}
* Rodolfo Gambini and Jorge Pullin, ''Loops, Knots, Gauge Theories and Quantum Gravity'', Cambridge University Press (1996)
* [[John C. Baez]] and Javier Perez de Muniain, ''Gauge Fields, Knots and Quantum Gravity'', World Scientific (1994)
* Abhay Ashtekar, ''Lectures on Non-Perturbative Canonical Gravity'', World Scientific (1991)
; Lavori introduttivi ed espositivi più semplici:
* [[Lee Smolin]], "Atoms in Space and Time," [[Scientific American]], gennaio 2004
* [[Abhay Ashtekar]], ''Gravity and the quantum'', e-print scaricabile [https://arxiv.org/abs/gr-qc/0410054 qui]
* [[Carlo Rovelli]], ''[https://arxiv.org/abs/hep-th/0310077 A Dialog on Quantum Gravity]'', e-print scaricabile
; Ulteriori approfondimenti:
* Carlo Rovelli, ''[http://www.livingreviews.org/lrr-1998-1 Loop Quantum Gravity]'', articolo on line, versione del 15 agosto 2001.
;Voci di enciclopedia
* Thomas Thiemann, ''[https://arxiv.org/abs/gr-qc/0110034 Introduction to modern canonical quantum general relativity]'', e-print scaricabile
* Thomas Thiemann, ''[https://arxiv.org/abs/gr-qc/0210094 Lectures on loop quantum gravity]'', e-print scaricabile
; Conferenze:
* [[John C. Baez]] (a cura di), ''Knots and Quantum Gravity''
; Scritti su ricerche fondamentali:
* Abhay Ashtekar, ''New variables for classical and quantum gravity'', Phys. Rev. Lett., '''57''', 2244-2247, 1986
* Abhay Ashtekar, ''New Hamiltonian formulation of general relativity'', Phys. Rev. '''D36''', 1587-1602, 1987
* [[Roger Penrose]], ''Angular momentum: an approach to combinatorial space-time'' in ''Quantum Theory and Beyond'', ed. Ted Bastin, Cambridge University Press, 1971
* Alejandro Perez, ''[https://arxiv.org/abs/gr-qc/0301113 Spin Foam Models for Quantum Gravity]'', 14 febbraio 2003
* [[Carlo Rovelli]] e [[Lee Smolin]], ''Loop space representation of quantum general relativity'', Nuclear Physics '''B331''' (1990) 80-152
* {{Cita web|url=http://xxx.lanl.gov/abs/gr-qc/9411005|titolo=Discreteness of area and volume in quantum gravity|autore1=Carlo Rovelli|autore2=Lee Smolin|sito=Cornell University Library|data=2 novembre 1994|lingua=en|accesso=11 dicembre 2021|urlarchivio=https://archive.is/20121211235201/http://xxx.lanl.gov/abs/gr-qc/9411005|dataarchivio=11 dicembre 2012}} Nucl. Phys., '''B442''' (1995) 593-622, e-print scaricabile.
* [[Carlo Rovelli]], [http://www.treccani.it/enciclopedia/gravita-quantistica_%28XXI-Secolo%29/ Gravità quantistica], ''Enciclopedia del XXI Secolo'' (2010), [[Istituto dell'Enciclopedia italiana Treccani]]
* Claudio Censori, [http://www.treccani.it/enciclopedia/gravita-quantistica_%28Lessico-del-XXI-Secolo%29/ Gravità quantistica], ''Lessico del XXI Secolo'' (2012), [[Istituto dell'Enciclopedia italiana Treccani]]
* {{SEP|quantum-gravity|Quantum Gravity|Steven Weinstein e Dean Rickles}}
* {{SEP|qm-relational|Relational Quantum Mechanics|Federico Laudisa e [[Carlo Rovelli]]}}
 
== BibliografiaAltri progetti ==
{{interprogetto}}
[http://www.arxiv.org/multi?archive=gr-qc&file=new+abstracts&year=%2705&month=03&args=0301113v2&%2Fabs=+Show+Abstract+&search_year=past+year&field_1=au&query_1=&subj_cond-mat=--%3E+cond-mat+subject+classes&subj_physics=--%3E+physics+subject+classes arXiv:gr-qc/03113V2]
* Libri divulgativi:
** Carlo Rovelli, ''Che cos'è il tempo, che cos'è lo spazio'', Di Renzo Editore, Roma,2004
** Lee Smolin, ''Three Roads to Quantum Gravity''
* Articoli di riviste:
** Lee Smolin, "Atoms in Space and Time," [[Scientific American]], Gennaio 2004
* Lavori introduttivi ed espositivi più semplici:
** Abhay Ashtekar, ''Gravity and the quantum'', e-print scaricabile da [http://arxiv.org/abs/gr-qc/0410054 gr-qc/0410054]
** John C. Baez and Javier Perez de Muniain, ''Gauge Fields, Knots and Quantum Gravity'', World Scientific (1994)
** [[Carlo Rovelli]], ''A Dialog on Quantum Gravity'', e-print scaricabile da [http://arxiv.org/abs/hep-th/0310077 hep-th/0310077]
* Ulteriori lavori più approfonditi:
** Abhay Ashtekar, ''New Perspectives in Canonical Gravity'', Bibliopolis (1988).
** Abhay Ashtekar, ''Lectures on Non-Perturbative Canonical Gravity'', World Scientific (1991)
** Abhay Ashtekar and Jerzy Lewandowski, ''Background independent quantum gravity: a status report'', e-print scaricabile da [http://arxiv.org/abs/gr-qc/0404018 gr-qc/0404018]
** Rodolfo Gambini and Jorge Pullin, ''Loops, Knots, Gauge Theories and Quantum Gravity'', Cambridge University Press (1996)
** Hermann Nicolai, Kasper Peeters, Marija Zamaklar, ''Loop quantum gravity: an outside view'', e-print scaricabile da [http://arxiv.org/abs/hep-th/0501114 hep-th/0501114]
** Carlo Rovelli, ''Quantum Gravity'', Cambridge University Press (2004); [http://www.cpt.univ-mrs.fr/~rovelli/book.pdf bozza online]
** Carlo Rovelli, ''Loop Quantum Gravity'', [http://www.livingreviews.org/lrr-1998-1 online article], versione del 15 Agosto 2001.
** Thomas Thiemann, ''Introduction to modern canonical quantum general relativity'', e-print scaricabile da [http://arxiv.org/abs/gr-qc/0110034 gr-qc/0110034]
** Thomas Thiemann, ''Lectures on loop quantum gravity'', e-print scaricabile da [http://arxiv.org/abs/gr-qc/0210094 gr-qc/0210094]
* Conferenze:
** John C. Baez (ed.), ''Knots and Quantum Gravity''
* Scritti su ricerche fondamentali:
** Abhay Ashtekar, ''New variables for classical and quantum gravity'', Phys. Rev. Lett., '''57''', 2244-2247, 1986
** Abhay Ashtekar, ''New Hamiltonian formulation of general relativity'', Phys. Rev. '''D36''', 1587-1602, 1987
** Roger Penrose, ''Angular momentum: an approach to combinatorial space-time'' in ''Quantum Theory and Beyond'', ed. Ted Bastin, Cambridge University Press, 1971
** Carlo Rovelli and Lee Smolin, ''Loop space representation of quantum general relativity'', Nuclear Physics '''B331''' (1990) 80-152
** Carlo Rovelli and Lee Smolin, ''Discreteness of area and volume in quantum gravity'', Nucl. Phys., '''B442''' (1995) 593-622, e-print scaricabile da [http://xxx.lanl.gov/abs/gr-qc/9411005 gr-qc/9411005]
 
== Collegamenti esterni ==
* {{en}} Quantum Gravity, Physics, and Philosophy: http://www.qgravity.org/
* {{en}} Resources for LQG and spin foams: http://jdc.math.uwo.ca/spin-foams/
* {{en}} [[Gamma- ray Largelarge Areaarea Spacespace Telescopetelescope]]: http://glast.gsfc.nasa.gov/ {{Webarchive|url=https://web.archive.org/web/20080618221025/http://glast.gsfc.nasa.gov/ |date=18 giugno 2008 }}
* {{cita web|http://focus.aps.org/story/v14/st13|Derivare le dimensioni|lingua=en}}
 
{{Portale|quantistica|relatività}}
[[Categoria:Fisica]]
[[Categoria:Meccanica quantistica]]
 
[[Categoria:Gravità quantistica a loop| ]]
[[ca:Teoria de la xarxa d'espín]]
[[de:Loop-Quantengravitation]]
[[en:Loop quantum gravity]]
[[es:Gravedad cuántica de bucles]]
[[nl:Loop-kwantumzwaartekracht]]
[[vi:Lý thuyết hấp dẫn lượng tử vòng]]