Rosetta@home: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m Bot: numeri di pagina nei template citazione |
|||
(34 versioni intermedie di 19 utenti non mostrate) | |||
Riga 12:
|Linguaggio =
|Genere = calcolo distribuito
|Licenza = Freeware per uso accademico e no-profit, licenza commerciale disponibile
|SoftwareLibero = no
|Lingua =
}}
'''Rosetta@home''' è un progetto di [[calcolo distribuito]] per la previsione della struttura delle [[proteine]] sulla piattaforma [[BOINC]] (Berkeley Open Infrastructure for Network Computing), svolto al
Come tutti i progetti BOINC, Rosetta@home utilizza le potenzialità di elaborazione inutilizzate dai computer dei volontari, per eseguire calcoli su unità di lavoro individuali. I risultati ottenuti vengono inviati a un [[server]] centrale del progetto, dove vengono convalidati ed inseriti nelle banche dati del progetto. Il progetto è multi piattaforma, e gira su una vasta gamma di configurazioni [[hardware]]. Gli utenti possono vedere il progresso delle loro previsioni della struttura della proteina sullo screensaver di Rosetta@home.
Rosetta@Home possiede anche una versione beta del progetto, [https://ralph.bakerlab.org/ Ralph@Home], in cui vengono testati i nuovi applicativi, le nuove impostazioni e tutto ciò che verrà poi introdotto nella versione definitiva sul progetto.
Oltre alla ricerca legata alle malattie, la rete di Rosetta@home funge da quadro di test per nuovi metodi di bioinformatica strutturale. Questi nuovi metodi sono poi utilizzati in altre applicazioni basate su Rosetta, come RosettaDock e il progetto [[Human Proteome Folding]], dopo essere stati sufficientemente sviluppati e giudicati stabili sull’ampio e diversificato gruppo di utenti di Rosetta@home. Due prove particolarmente importanti per i nuovi metodi sviluppati con Rosetta@home sono il Critical Assessment of Techniques for Protein Structure Prediction (CASP) e il Critical Assessment of Prediction of Interactions (CAPRI), esperimenti biennali che valutano rispettivamente lo stato dell'arte nella previsione della struttura delle proteine e dell’interazione proteina-proteina. Rosetta@home si classifica tra i principali programmi di simulazione delle interazioni tra proteine ed è uno dei migliori metodi di previsione della [[struttura terziaria]] disponibili.<ref name="CAPRI3">{{Cita pubblicazione |autore=Lensink MF, Méndez R, Wodak SJ |titolo=Docking and scoring protein complexes: CAPRI 3rd Edition |rivista=Proteins |volume=69 |numero=4 |pagine=704–18 |anno=2007 |mese=dicembre |id=PMID 17918726 |doi=10.1002/prot.21804 |url=}}</ref>▼
▲Oltre alla ricerca legata alle malattie, la rete di Rosetta@home funge da quadro di test per nuovi metodi di bioinformatica strutturale. Questi nuovi metodi sono poi utilizzati in altre applicazioni basate su Rosetta, come RosettaDock e il progetto [[Human Proteome Folding]], dopo essere stati sufficientemente sviluppati e giudicati stabili
==La piattaforma di calcolo==
Sia l'applicazione Rosetta@home che la piattaforma di calcolo distribuito BOINC sono disponibili per Microsoft Windows, Linux e Macintosh (BOINC è disponibile anche per diverse altre piattaforme, come ad esempio FreeBSD). La partecipazione a Rosetta@home richiede un'unità centrale di elaborazione ([[CPU]]) con una velocità di clock di almeno 500 [[MHz]],
Una caratteristica principale dell'interfaccia grafica ([[GUI]]) di Rosetta@home è un [[salvaschermo]] che mostra il progresso della workunit in esecuzione durante il processo di folding simulato. Nell'angolo in alto a sinistra dello screensaver, la proteina bersaglio è mostrata mentre adotta forme diverse (conformazioni) durante la ricerca della sua struttura a più bassa energia. Raffigurata subito a destra c'è la struttura più recente accettata. In alto a destra è mostrata la conformazione a più bassa energia finora trovata, al di sotto c'è la vera, o nativa, struttura della proteina, se è già stato determinata sperimentalmente. Tre grafici sono inclusi nello screensaver. Al centro, un grafico indica l'energia libera accettata, la quale fluttua via via che il modello accettato cambia. Un grafico della ''root mean square deviation'' (RMSD) del modello accettato, che misura quanto il modello accettato sia strutturalmente simile al modello originario, viene visualizzato a destra. Sulla destra del grafico dell'energia e sotto il grafico RMSD, i risultati di queste due funzioni vengono utilizzati per produrre il riquadro energia vs RMSD, mentre il modello viene progressivamente raffinato.
Come tutti i progetti BOINC, Rosetta@home viene eseguito in background sul computer dell'utente usando la potenza inutilizzata. Rosetta@home libera le risorse dalla CPU non appena sono richieste da altre applicazioni in modo che l'uso normale del computer non venga influenzato. Per ridurre al minimo il consumo di energia o calore di un computer che lavora in modo sostenuto, la percentuale massima delle risorse della CPU a cui Rosetta@home può accedere, può essere specificata tramite le preferenze dell'account utente. Le ore dei giorni durante le quali Rosetta@home è autorizzata ad eseguire il lavoro, possono anche loro essere regolate insieme a molte altre preferenze, attraverso le impostazioni dell'account.
Rosetta, il software che gira sulla rete Rosetta@home, è stato riscritto in [[C++]] per permettere uno sviluppo più facile di quello offerto dalla sua versione originale, che è stata scritta in [[Fortran]]. Questa nuova versione è object-oriented, ed è stata pubblicata l'8 febbraio 2008. Lo sviluppo del codice di Rosetta è fatto da Rosetta Commons. Il software è liberamente concesso in licenza alla comunità accademica e disponibile a pagamento per le società farmaceutiche.
Line 37 ⟶ 38:
Con il completamento del Genoma umano gli scienziati hanno soltanto una visione "piana" della struttura delle proteine (la struttura primaria sono le sequenze di aminoacidi). Per poter conoscere approfonditamente cosa fanno le proteine, gli scienziati hanno bisogno di conoscere la struttura tridimensionale delle proteine (struttura terziaria). Conoscendo le proteine in 3D, gli scienziati potranno intuire il loro ruolo nei processi delle cellule e creare terapie più efficaci nel combattere un gran numero di malattie.
La struttura 3D delle proteine attualmente è scoperta in modo sperimentale nei laboratori attraverso la [[cristallografia a raggi X]] oppure attraverso la [[risonanza magnetica nucleare]]. Il processo è però molto lento (possono essere impiegate settimane o addirittura mesi per capire come cristallizzare una proteina per la prima volta) e molto costoso (circa $100'000 USD per proteina).<ref>{{Cita libro |titolo= Structural Bioinformatics |curatore= Bourne PE, Helge W| anno=2003 |città= Hoboken, NJ | editore=Wiley-Liss |
Rosetta@home sviluppa anche metodi per determinare la struttura e l'interazione delle proteine di membrana (ad esempio, GPCR),<ref>{{Cita web | titolo=Rosetta@home: David Baker's Rosetta@home journal (message 55893) | autore=Baker D |
[[Image:T0281-bakerprediction overlay.png|thumb
I progressi nella previsione della struttura delle proteine sono valutati ogni due anni nel Critical Assessment of Techniques for Protein Structure Prediction (CASP), in cui ricercatori di tutto il mondo cercano di ricavare la struttura di una proteina a partire dalla sequenza dei suoi [[amminoacido|amminoacidi]]. I gruppi di ricerca che ottengono alti punteggi in questo esperimento talvolta competitivo, sono considerati
Rosetta@home è utilizzata anche nella previsione di interazioni proteiche, in cui si determina la struttura di complessi multiproteici, o [[struttura quaternaria|strutture quaternarie]]. Questo tipo di interazioni proteiche è presente in molte funzioni cellulari, tra cui [[antigene]]-[[anticorpo]], legame [[enzima]]-[[inibitore enzimatico|inibitore]] e import-export cellulare. Determinare queste interazioni è essenziale per lo sviluppo di farmaci. Rosetta è utilizzata nel Critical Assessment of Prediction of Interactions (CAPRI), che valuta lo stato
All'inizio del 2008, Rosetta è stata utilizzata per la progettazione computazionale di una proteina con una funzione mai osservata in natura.<ref name="RetroAldol">{{Cita pubblicazione |autore=Jiang L, Althoff EA, Clemente FR, ''et al.'' |titolo=De novo computational design of retro-aldol enzymes |rivista=Science|volume=319 |numero=5868 |
==Attinenza medica==
Rosetta@home è un progetto focalizzato sulla ricerca di base, ma parte del lavoro include vari virus tra cui [[AIDS]], [[
Esiste un collegamento in tre punti che porta dalla previsione strutturale al trattamento della malattia:
Line 57 ⟶ 58:
==Ricerca legata alle malattie==
Oltre alla ricerca di base volta a prevedere la struttura delle proteine, il docking e la progettazione, Rosetta@home è utilizzata anche
===
Un componente della suite del software Rosetta, RosettaDesign, è stato utilizzato per prevedere con precisione quali regioni di proteine amiloidogeniche sono più propense a formare fibrille simili a quelle amiloidi. Prendendo esopeptidi (frammenti lunghi sei aminoacidi) di una proteina di interesse e selezionando quello a più bassa energia con struttura simile a quella di un esapeptide che si sa formare delle fibrille, RosettaDesign è stato in grado di identificare peptidi con il doppio delle probabilità di formare fibrille rispetto a proteine casuali. Rosetta@home è stata utilizzata nello stesso studio per prevedere le strutture della [[betamiloide]], una proteina fibrillare che è stata ipotizzata essere la causa
===Antrace===
Un altro componente di Rosetta, RosettaDock, è stato utilizzato in combinazione con metodi sperimentali per fare un modello delle interazioni fra tre proteine - il fattore letale (LF), il fattore edema (EF) e
===Herpes simplex virus 1===
RosettaDock è stato utilizzato per simulare
===HIV===
Come parte di una ricerca sovvenzionata con 19,4 milioni di dollari dalla Bill e Melinda Gates Foundation, Rosetta@home è
===Malaria===
In una ricerca coinvolta nell'iniziativa Grand Challenges in Global Health, Rosetta è stata utilizzata per progettare nuove proteine che potrebbero eliminare Anopheles gambiae oppure rendere la zanzara incapace di trasmettere la [[malaria]]. Essere in grado di modellare e modificare specificamente le interazioni proteina-DNA, conferisce ai metodi di progettazione computazionale di proteine, come Rosetta, un ruolo importante nella [[terapia genica]] (che include possibili trattamenti del [[cancro (malattia)|cancro]]).
==Storia dello sviluppo e dei software derivati==
Originariamente introdotto dal laboratorio Baker nel 1998 come un approccio ''ab initio'' per la previsione della struttura, Rosetta da allora si è ramificata in diverse vie di sviluppo e servizi distinti. La piattaforma di Rosetta prende il suo nome dalla [[Stele di Rosetta]], poiché tenta di decifrare il "significato" strutturale delle sequenze proteiche di aminoacidi. Ad oltre sette anni dalla prima apparizione di Rosetta, il progetto Rosetta@home è stato avviato (cioè annunciato come non più beta), il 6 ottobre 2005. Molti degli studenti laureati e altri ricercatori coinvolti nello sviluppo iniziale di Rosetta, si sono da allora spostati in altre università e istituti di ricerca e hanno successivamente rafforzato diverse parti del progetto Rosetta.
===RosettaDesign===
[[Image:TOP7-rosetta superposition.png|right
RosettaDesign, un approccio computazionale per la progettazione di proteine basato su Rosetta, è iniziato nel 2000 con uno studio volto a ridisegnare il percorso di ripiegamento di una proteina G. Nel 2002 RosettaDesign è stato utilizzato per progettare Top7, una proteina α/β lunga 93 aminoacidi che ha un ripiegamento mai osservato prima in natura. Questa nuova conformazione è stata predetta da Rosetta entro un [[RMSD]] di 1,2 Å dalla struttura determinata tramite cristallografia a raggi X, il che rappresentava una previsione insolitamente accurata. Rosetta e RosettaDesign hanno guadagnato un ampio riconoscimento per essere stati i primi a progettare e prevedere con precisione la struttura di una nuova proteina di tale lunghezza. A prova di questo,
Brian Kuhlman, un ex postdoc nel laboratorio di David Baker e ora assistente professore presso la Università del Nord Carolina, Chapel Hill, offre RosettaDesign come servizio online.
===RosettaDock===
RosettaDock è stato aggiunto alla suite software di Rosetta durante il primo esperimento CAPRI nel 2002, in qualità di algoritmo del laboratorio di Baker per la previsione del docking proteina-proteina. In questo esperimento, RosettaDock ha fatto una previsione ad alta precisione del docking tra
Lo sviluppo di RosettaDock si è diviso in due rami per le successive gare CAPRI, dato che Jeffrey Gray, che ha gettato le basi per RosettaDock mentre era
Nel mese di ottobre 2006, RosettaDock è stata integrata in Rosetta@home. Il metodo utilizza una veloce e grezza fase di modello del docking utilizzando solo lo scheletro delle proteine. Questa è seguita da una lenta fase di perfezionamento atomico in cui l'orientamento rispettivo delle due proteine interagenti, e
▲Lo sviluppo di RosettaDock si è diviso in due rami per le successive gare CAPRI, dato che Jeffrey Gray, che ha gettato le basi per RosettaDock mentre era all’Università di Washington, ha continuato a lavorare sul metodo nella sua nuova posizione presso la Johns Hopkins University. I membri del laboratorio di Baker hanno continuato lo sviluppo di RosettaDock in assenza di Gray. Le due versioni differiscono leggermente nella modellazione delle catene laterali, la selezione del “richiamo” e in altri settori. Nonostante queste differenze, sia il metodo di Baker che quello di Gray hanno dato buoni risultati nella seconda competizione CAPRI, posizionandosi rispettivamente quinto e settimo su un totale di 30 gruppi. Il server RosettaDock di Jeffrey Gray è disponibile come servizio gratuito di predizione di docking proteico per uso non commerciale.
▲Nel mese di ottobre 2006, RosettaDock è stata integrata in Rosetta@home. Il metodo utilizza una veloce e grezza fase di modello del docking utilizzando solo lo scheletro delle proteine. Questa è seguita da una lenta fase di perfezionamento atomico in cui l'orientamento rispettivo delle due proteine interagenti, e l’interazione delle catene laterali all’interfaccia proteina-proteina, vengono contemporaneamente ottimizzati per trovare la conformazione a più bassa energia. Il notevole aumento di potenza di calcolo offerto dalla rete di Rosetta@home, in combinazione con la rivista rappresentazione "fold-tree" di flessibilità dello scheletro e modellazione dei loop, ha portato RosettaDock ad essere sesta su 63 gruppi di previsione nel terzo esperimento CAPRI.
Il server Robetta è un servizio automatizzato di previsione della struttura proteica offerto dal laboratorio di Baker per la modellazione comparativa ''ab initio'' non a fini commerciali. Ha partecipato come server automatico di previsione negli
▲===Robetta===
▲Il server Robetta è un servizio automatizzato di previsione della struttura proteica offerto dal laboratorio di Baker per la modellazione comparativa ''ab initio'' non a fini commerciali. Ha partecipato come server automatico di previsione negli esperimenti CASP fin dal CASP5 nel 2002, dimostrandosi tra i migliori nella categoria di previsione automatizzata. Da allora Robetta ha gareggiato nel CASP6 e 7, dove ha fatto meglio della media sia tra i server automatici che tra i gruppi di previsione umani.
Nel modellare la struttura della proteina del CASP6, Robetta prima cerca degli omologhi strutturali utilizzando BLAST, PSI-BLAST e 3D-Jury, poi analizza la sequenza della proteina nei suoi singoli domini, o ripiega indipendentemente unità della proteina, facendo corrispondere la sequenza a famiglie strutturali nel Pfam database. I domini con omologhi strutturali seguono quindi un protocollo "template-based model" (es, modellazione per omologia). A questo punto, il programma di allineamento del laboratorio di Baker, K* sync, produce un gruppo di omologhi di sequenza e ciascuno di questi è modellato dal metodo ''de novo'' di Rosetta per produrre un “richiamo” (possibile struttura). La previsione finale della struttura è selezionata prendendo il modello a più bassa energia determinato dalla funzione energetica a bassa risoluzione di Rosetta. Per i domini che non presentano omologhi strutturali, viene seguito un protocollo ''de novo'', in cui il modello a più bassa energia da una serie di “richiami” generati è selezionato come la previsione finale. Queste previsioni dei domini sono poi collegate tra loro per indagare interazioni a livello terziario e inter-dominio all'interno della proteina. Infine, i contributi delle catene laterali sono modellati utilizzando un protocollo [[Metodo Monte Carlo|Monte Carlo]] per la ricerca conformazionale.
Line 99 ⟶ 100:
===Foldit===
Il 9 maggio 2008, dopo che gli utenti di Rosetta@home avevano suggerito una versione interattiva del programma di [[calcolo distribuito]], il laboratorio di Baker ha pubblicamente
==Confronto a simili progetti di calcolo distribuito==
Ci sono diversi progetti di calcolo distribuito che hanno aree di studio simili a quelle di Rosetta@home, ma differiscono nel loro approccio di ricerca:
===Folding@home===
Di tutti i principali progetti di [[calcolo distribuito]] coinvolti nella ricerca sulle proteine, [[Folding@home]] è l'unico a non utilizzare la piattaforma [[BOINC]]. Sia Rosetta@home che Folding@home fanno ricerca su malattie legate al misfolding delle proteine (ad esempio la malattia di [[Alzheimer]]), ma Folding@home lo fa in modo più esclusivo. Invece di utilizzare metodi basati sulla struttura o il design per prevedere il comportamento, per esempio, dell'[[Amiloidosi|amiloide]], Folding@home usa la dinamica molecolare per fare dei modelli su come le proteine si ripiegano (o potenzialmente mal-ripiegano e successivamente aggregano). In altre parole, la forza di Folding@home è la modellazione del processo di folding delle proteine, mentre la forza di Rosetta@home è la previsione della struttura delle proteine e delle loro interazioni, oltre che il design di nuove proteine. I due progetti differiscono anche in modo significativo per la loro potenza di calcolo e la diversità di hardware usato. A una media di circa
===World Community Grid===
Sia la fase I che la fase II di [[Human Proteome Folding]] (HPF), un sottoprogetto di [[World Community Grid]], hanno utilizzato il programma Rosetta per fare annotazioni strutturali e funzionali di diversi genomi. Anche se ora la usa per creare banche dati per i biologi, Richard Bonneau, scienziato capo di Human Proteome Folding, è stato attivo nello sviluppo originale di Rosetta presso il laboratorio di David Baker, mentre conseguiva il dottorato.
Line 113 ⟶ 114:
Come Rosetta@home, [[Predictor@home]] era specializzato nella previsione della struttura delle proteine. Predictor@home prevedeva di sviluppare nuove aree per la sua piattaforma di calcolo distribuito nella progettazione di proteine e di docking proteico (utilizzando il pacchetto [[CHARMM]] di dinamica molecolare), divenendo così maggiormente paragonabile a Rosetta@home. Mentre Rosetta@home utilizza il programma Rosetta per la sua previsione della struttura, Predictor@home utilizzava la metodologia dTASSER.
Altri progetti di calcolo distribuito su BOINC correlati alle proteine sono [[QMC@home]], [[Docking@home]], [[POEM@home]], [[SIMAP]], e Tanpaku
==Note==▼
<references/>▼
==Voci correlate==
* [[Lista dei progetti di calcolo distribuito]]
* [[BOINC]]
* [[Citizen science]]
* [[Calcolo distribuito]]
* [[Foldit]]
Line 123 ⟶ 128:
* [[World Community Grid]]
== Altri progetti ==
▲==Note==
{{interprogetto}}
▲<references/>
== Collegamenti esterni ==
*{{
{{Portale|Biologia|informatica}}
[[Categoria:BOINC]]
[[Categoria:Citizen science]]
|