Rosetta@home: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
m →Collegamenti esterni: Bot: Aggiungo portale |
m Bot: numeri di pagina nei template citazione |
||
(25 versioni intermedie di 14 utenti non mostrate) | |||
Riga 12:
|Linguaggio =
|Genere = calcolo distribuito
|Licenza = Freeware per uso accademico e no-profit, licenza commerciale disponibile<ref>{{Cita web | titolo=Portfolio Highlight: Rosetta++ Software Suite | editore=UW TechTransfer – Digital Ventures | url=
|SoftwareLibero = no
|Lingua =
}}
'''Rosetta@home''' è un progetto di [[calcolo distribuito]] per la previsione della struttura delle [[proteine]] sulla piattaforma [[BOINC]] (Berkeley Open Infrastructure for Network Computing), svolto al Baker laboratory
Come tutti i progetti BOINC, Rosetta@home utilizza le potenzialità di elaborazione inutilizzate dai computer dei volontari, per eseguire calcoli su unità di lavoro individuali. I risultati ottenuti vengono inviati a un [[server]] centrale del progetto, dove vengono convalidati ed inseriti nelle banche dati del progetto. Il progetto è multi piattaforma, e gira su una vasta gamma di configurazioni [[hardware]]. Gli utenti possono vedere il progresso delle loro previsioni della struttura della proteina sullo screensaver di Rosetta@home.
Rosetta@Home possiede anche una versione beta del progetto, [https://ralph.bakerlab.org/ Ralph@Home], in cui vengono testati i nuovi applicativi, le nuove impostazioni e tutto ciò che verrà poi introdotto nella versione definitiva sul progetto.
Oltre alla ricerca legata alle malattie, la rete di Rosetta@home funge da quadro di test per nuovi metodi di bioinformatica strutturale. Questi nuovi metodi sono poi utilizzati in altre applicazioni basate su Rosetta, come RosettaDock e il progetto [[Human Proteome Folding]], dopo essere stati sufficientemente sviluppati e giudicati stabili sull’ampio e diversificato gruppo di utenti di Rosetta@home. Due prove particolarmente importanti per i nuovi metodi sviluppati con Rosetta@home sono il Critical Assessment of Techniques for Protein Structure Prediction (CASP) e il Critical Assessment of Prediction of Interactions (CAPRI), esperimenti biennali che valutano rispettivamente lo stato dell'arte nella previsione della struttura delle proteine e dell’interazione proteina-proteina. Rosetta@home si classifica tra i principali programmi di simulazione delle interazioni tra proteine ed è uno dei migliori metodi di previsione della [[struttura terziaria]] disponibili.<ref name="CAPRI3">{{Cita pubblicazione |autore=Lensink MF, Méndez R, Wodak SJ |titolo=Docking and scoring protein complexes: CAPRI 3rd Edition |rivista=Proteins |volume=69 |numero=4 |pagine=704–18 |anno=2007 |mese=dicembre|pmid=17918726 |doi=10.1002/prot.21804 }}</ref>▼
▲Oltre alla ricerca legata alle malattie, la rete di Rosetta@home funge da quadro di test per nuovi metodi di bioinformatica strutturale. Questi nuovi metodi sono poi utilizzati in altre applicazioni basate su Rosetta, come RosettaDock e il progetto [[Human Proteome Folding]], dopo essere stati sufficientemente sviluppati e giudicati stabili
==La piattaforma di calcolo==
Sia l'applicazione Rosetta@home che la piattaforma di calcolo distribuito BOINC sono disponibili per Microsoft Windows, Linux e Macintosh (BOINC è disponibile anche per diverse altre piattaforme, come ad esempio FreeBSD). La partecipazione a Rosetta@home richiede un'unità centrale di elaborazione ([[CPU]]) con una velocità di clock di almeno 500 [[MHz]],
Una caratteristica principale dell'interfaccia grafica ([[GUI]]) di Rosetta@home è un [[salvaschermo]] che mostra il progresso della workunit in esecuzione durante il processo di folding simulato. Nell'angolo in alto a sinistra dello screensaver, la proteina bersaglio è mostrata mentre adotta forme diverse (conformazioni) durante la ricerca della sua struttura a più bassa energia. Raffigurata subito a destra c'è la struttura più recente accettata. In alto a destra è mostrata la conformazione a più bassa energia finora trovata, al di sotto c'è la vera, o nativa, struttura della proteina, se è già stato determinata sperimentalmente. Tre grafici sono inclusi nello screensaver. Al centro, un grafico indica l'energia libera accettata, la quale fluttua via via che il modello accettato cambia. Un grafico della ''root mean square deviation'' (RMSD) del modello accettato, che misura quanto il modello accettato sia strutturalmente simile al modello originario, viene visualizzato a destra. Sulla destra del grafico dell'energia e sotto il grafico RMSD, i risultati di queste due funzioni vengono utilizzati per produrre il riquadro energia vs RMSD, mentre il modello viene progressivamente raffinato.
Line 37 ⟶ 38:
Con il completamento del Genoma umano gli scienziati hanno soltanto una visione "piana" della struttura delle proteine (la struttura primaria sono le sequenze di aminoacidi). Per poter conoscere approfonditamente cosa fanno le proteine, gli scienziati hanno bisogno di conoscere la struttura tridimensionale delle proteine (struttura terziaria). Conoscendo le proteine in 3D, gli scienziati potranno intuire il loro ruolo nei processi delle cellule e creare terapie più efficaci nel combattere un gran numero di malattie.
La struttura 3D delle proteine attualmente è scoperta in modo sperimentale nei laboratori attraverso la [[cristallografia a raggi X]] oppure attraverso la [[risonanza magnetica nucleare]]. Il processo è però molto lento (possono essere impiegate settimane o addirittura mesi per capire come cristallizzare una proteina per la prima volta) e molto costoso (circa $100'000 USD per proteina).<ref>{{Cita libro |titolo= Structural Bioinformatics |curatore= Bourne PE, Helge W| anno=2003 |città= Hoboken, NJ | editore=Wiley-Liss |isbn=978-0-471-20199-1 |oclc= 50199108 }}</ref> Una volta che la struttura 3D di una proteina è completata, spesso viene depositata in un database di pubblico dominio come il [http://www.rcsb.org/ Protein Databank] o il [
Rosetta@home sviluppa anche metodi per determinare la struttura e l'interazione delle proteine di membrana (ad esempio, GPCR),<ref>{{Cita web | titolo=Rosetta@home: David Baker's Rosetta@home journal (message 55893) | autore=Baker D |sito= Rosetta@home forums| editore=University of Washington |anno=2008 |accesso=7 ottobre 2008|url=
[[Image:T0281-bakerprediction overlay.png|thumb
I progressi nella previsione della struttura delle proteine sono valutati ogni due anni nel Critical Assessment of Techniques for Protein Structure Prediction (CASP), in cui ricercatori di tutto il mondo cercano di ricavare la struttura di una proteina a partire dalla sequenza dei suoi [[amminoacido|amminoacidi]]. I gruppi di ricerca che ottengono alti punteggi in questo esperimento talvolta competitivo, sono considerati portatori di uno standard per quello che è lo stato dell'arte nella previsione della struttura delle proteine. Rosetta, il programma su cui Rosetta@home si basa, è stato utilizzato fin dal CASP5 nel 2002. Nell'esperimento CASP6 del 2004, Rosetta è passata alla storia per essere il primo programma a produrre, nel suo modello presentato per il CASP target T0281, una previsione di una struttura proteica ''ab initio'' vicina alla risoluzione a livello atomico.<ref name="R@H_ResearchOverview">{{Cita web |sito= Rosetta@home |titolo= Rosetta@home: Research Overview |
Rosetta@home è utilizzata anche nella previsione di interazioni proteiche, in cui si determina la struttura di complessi multiproteici, o [[struttura quaternaria|strutture quaternarie]]. Questo tipo di interazioni proteiche è presente in molte funzioni cellulari, tra cui [[antigene]]-[[anticorpo]], legame [[enzima]]-[[inibitore enzimatico|inibitore]] e import-export cellulare. Determinare queste interazioni è essenziale per lo sviluppo di farmaci. Rosetta è utilizzata nel Critical Assessment of Prediction of Interactions (CAPRI), che valuta lo stato
All'inizio del 2008, Rosetta è stata utilizzata per la progettazione computazionale di una proteina con una funzione mai osservata in natura.<ref name="RetroAldol">{{Cita pubblicazione |autore=Jiang L, Althoff EA, Clemente FR, ''et al.'' |titolo=De novo computational design of retro-aldol enzymes |rivista=Science|volume=319 |numero=5868 |
==Attinenza medica==
Rosetta@home è un progetto focalizzato sulla ricerca di base, ma parte del lavoro include vari virus tra cui [[AIDS]], [[malattia di Alzheimer]], [[cancro (malattia)|cancro]] e [[malaria]]. Non ancora tutti i progetti appena citati sono già sulla piattaforma [[BOINC]] perché il progetto sta lavorando su di un efficiente sistema per le code in grado di permettere ai ricercatori di inviare nuovi progetti in maniera semplice ({{en}} [https://web.archive.org/web/20080923080902/http://boinc.bakerlab.org/rosetta/rah_medical_relevance.php]).
Esiste un collegamento in tre punti che porta dalla previsione strutturale al trattamento della malattia:
Line 57 ⟶ 58:
==Ricerca legata alle malattie==
Oltre alla ricerca di base volta a prevedere la struttura delle proteine, il docking e la progettazione, Rosetta@home è utilizzata anche
===La malattia di Alzheimer===
Line 63 ⟶ 64:
===Antrace===
Un altro componente di Rosetta, RosettaDock, è stato utilizzato in combinazione con metodi sperimentali per fare un modello delle interazioni fra tre proteine - il fattore letale (LF), il fattore edema (EF) e
===Herpes simplex virus 1===
RosettaDock è stato utilizzato per simulare
===HIV===
Come parte di una ricerca sovvenzionata con 19,4 milioni di dollari dalla Bill e Melinda Gates Foundation, Rosetta@home è
===Malaria===
Line 78 ⟶ 79:
===RosettaDesign===
[[Image:TOP7-rosetta superposition.png|right
RosettaDesign, un approccio computazionale per la progettazione di proteine basato su Rosetta, è iniziato nel 2000 con uno studio volto a ridisegnare il percorso di ripiegamento di una proteina G. Nel 2002 RosettaDesign è stato utilizzato per progettare Top7, una proteina α/β lunga 93 aminoacidi che ha un ripiegamento mai osservato prima in natura. Questa nuova conformazione è stata predetta da Rosetta entro un [[RMSD]] di 1,2 Å dalla struttura determinata tramite cristallografia a raggi X, il che rappresentava una previsione insolitamente accurata. Rosetta e RosettaDesign hanno guadagnato un ampio riconoscimento per essere stati i primi a progettare e prevedere con precisione la struttura di una nuova proteina di tale lunghezza. A prova di questo,
Brian Kuhlman, un ex postdoc nel laboratorio di David Baker e ora assistente professore presso la Università del Nord Carolina, Chapel Hill, offre RosettaDesign come servizio online.
===RosettaDock===
RosettaDock è stato aggiunto alla suite software di Rosetta durante il primo esperimento CAPRI nel 2002, in qualità di algoritmo del laboratorio di Baker per la previsione del docking proteina-proteina. In questo esperimento, RosettaDock ha fatto una previsione ad alta precisione del docking tra
Lo sviluppo di RosettaDock si è diviso in due rami per le successive gare CAPRI, dato che Jeffrey Gray, che ha gettato le basi per RosettaDock mentre era
Nel mese di ottobre 2006, RosettaDock è stata integrata in Rosetta@home. Il metodo utilizza una veloce e grezza fase di modello del docking utilizzando solo lo scheletro delle proteine. Questa è seguita da una lenta fase di perfezionamento atomico in cui l'orientamento rispettivo delle due proteine interagenti, e
===Robetta===
Line 99 ⟶ 100:
===Foldit===
Il 9 maggio 2008, dopo che gli utenti di Rosetta@home avevano suggerito una versione interattiva del programma di [[calcolo distribuito]], il laboratorio di Baker ha pubblicamente
==Confronto a simili progetti di calcolo distribuito==
Line 105 ⟶ 106:
===Folding@home===
Di tutti i principali progetti di [[calcolo distribuito]] coinvolti nella ricerca sulle proteine, [[Folding@home]] è l'unico a non utilizzare la piattaforma [[BOINC]]. Sia Rosetta@home che Folding@home fanno ricerca su malattie legate al misfolding delle proteine (ad esempio la malattia di [[Alzheimer]]), ma Folding@home lo fa in modo più esclusivo. Invece di utilizzare metodi basati sulla struttura o il design per prevedere il comportamento, per esempio, dell'[[Amiloidosi|amiloide]], Folding@home usa la dinamica molecolare per fare dei modelli su come le proteine si ripiegano (o potenzialmente mal-ripiegano e successivamente aggregano). In altre parole, la forza di Folding@home è la modellazione del processo di folding delle proteine, mentre la forza di Rosetta@home è la previsione della struttura delle proteine e delle loro interazioni, oltre che il design di nuove proteine. I due progetti differiscono anche in modo significativo per la loro potenza di calcolo e la diversità di hardware usato. A una media di circa
===World Community Grid===
Line 113 ⟶ 114:
Come Rosetta@home, [[Predictor@home]] era specializzato nella previsione della struttura delle proteine. Predictor@home prevedeva di sviluppare nuove aree per la sua piattaforma di calcolo distribuito nella progettazione di proteine e di docking proteico (utilizzando il pacchetto [[CHARMM]] di dinamica molecolare), divenendo così maggiormente paragonabile a Rosetta@home. Mentre Rosetta@home utilizza il programma Rosetta per la sua previsione della struttura, Predictor@home utilizzava la metodologia dTASSER.
Altri progetti di calcolo distribuito su BOINC correlati alle proteine sono [[QMC@home]], [[Docking@home]], [[POEM@home]], [[SIMAP]], e Tanpaku
==Note==
Line 121 ⟶ 122:
* [[Lista dei progetti di calcolo distribuito]]
* [[BOINC]]
* [[Citizen science]]
* [[Calcolo distribuito]]
* [[Foldit]]
* [[Folding@home]]
* [[World Community Grid]]
== Altri progetti ==
{{interprogetto}}
== Collegamenti esterni ==
*{{
{{Portale|Biologia|informatica}}
[[Categoria:BOINC]]
[[Categoria:Citizen science]]
|