Meccanica razionale: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Etichette: Modifica da mobile Modifica da web per mobile |
→Bibliografia: Sostituito link interrotto |
||
(12 versioni intermedie di 6 utenti non mostrate) | |||
Riga 1:
[[File:Carl Jacobi.jpg|thumb|[[Carl Jacobi|Carl Gustav Jacobi]]]]
La '''meccanica razionale''' (o '''meccanica analitica''')
== Descrizione ==
Riga 8:
All'interno della meccanica razionale è possibile distinguere due differenti formulazioni: la [[meccanica lagrangiana]] e la [[meccanica hamiltoniana]]. La principale distinzione tra di esse è rappresentata da una diversa scelta operata nel selezionare le [[Coordinate lagrangiane|coordinate]] usate per generare lo [[spazio delle fasi]]. In particolare, tramite la formulazione hamiltoniana si arriva allo studio delle [[varietà simplettica|varietà simplettiche]] e di [[varietà di Poisson|Poisson]].
La ''meccanica lagrangiana'' è una formulazione della [[meccanica
La ''meccanica hamiltoniana''
=== Caratteristiche ===
[[File:Joseph liouville.jpeg|thumb|[[Joseph Liouville]]]]
Sistemi meccanici centrali nella teoria sono quelli composti da un numero finito di [[punto materiale|punti materiali]] soggetti a [[forza (fisica)|forze]], sia che essi siano liberi di muoversi in uno [[spazio vettoriale]], come lo [[spazio tridimensionale]], sia che siano [[vincolo|vincolati]] a muoversi su sottoinsiemi di uno spazio vettoriale rappresentati da [[Varietà differenziabile|varietà differenziabili]] ([[Curva (matematica)|curve]] o [[Superficie|superfici]]). Dal momento che gli spazi vettoriali sono esempi particolari di varietà differenziabili, è evidente che queste ultime costituiscono l'ambiente di definizione naturale della meccanica razionale, a prescindere dall'esistenza di uno "spazio fisico" in cui queste varietà siano immerse.
La meccanica razionale si occupa anche di alcuni sistemi che, pur essendo costituiti da un numero infinito di [[punto materiale|punti materiali]], sono soggetti a particolari [[vincolo|vincoli]], come nel caso dei [[corpo rigido|corpi rigidi]], che ne rendono finito il numero di gradi di libertà. Un altro importante campo di applicazione della meccanica razionale è rappresentato dalla teoria generale dei [[sistema dinamico|sistemi dinamici]]. Tuttavia, va sottolineato che l'attenzione della disciplina è diretta non tanto al confronto dei [[modello matematico|modelli]] con i dati sperimentali, quanto allo studio, la sistematizzazione e la generalizzazione delle strutture matematiche utilizzate da questi modelli, come ad esempio il [[calcolo delle variazioni]].
Line 29 ⟶ 28:
*[[Horace Lamb]] ''[https://www.archive.org/details/highermechanics00lambuoft Higher mechanics]'' Cambridge University Press, 1920;
* Alexander Ziwet e P. Field ''[https://www.archive.org/details/introductiontoan00ziweuoft Introduction to analytical mechanics]'' MacMillan, 1921;
* {{cita libro|autore=Paul Appell|url=
* {{Cita libro|autore=[[Tullio Levi Civita]]|autore2=[[Ugo Amaldi]]|titolo=Cinematica: principi e statica|url=http://mathematica.sns.it/opere/306/|anno=1938|volume=1}}
* {{Cita libro|autore=[[Tullio Levi Civita]]|autore2=[[Ugo Amaldi]]|titolo=Dinamica: cenni di meccanica dei sistemi continui|url=http://mathematica.sns.it/opere/307/|anno=1938|volume=2}}
Line 44 ⟶ 43:
* [[Coordinate generalizzate]]
* [[Azione (fisica)]]
* [[Lagrangiana]]
* [[Meccanica hamiltoniana]]
Line 58 ⟶ 56:
== Altri progetti ==
{{interprogetto|b|preposizione=sulla|wikt=meccanica razionale}}
==Collegamenti esterni==
* {{Collegamenti esterni}}
* {{cita web |autore=Raffaele Esposito| 1 = http://people.disim.univaq.it/~serva/teaching/Esposito.pdf | 2 = Appunti di Meccanica Razionale a cura di Raffaele Esposito|editore=Universit`a degli Studi de L’Aquila| accesso = 22 febbraio 2023 }}
|