Calcolo combinatorio: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
→Bibliografia: wikilink |
|||
| (11 versioni intermedie di 8 utenti non mostrate) | |||
Riga 1:
Il '''calcolo combinatorio''' è la branca della [[matematica]] che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un [[insieme]] finito di oggetti. Il calcolo combinatorio si interessa soprattutto di contare tali modi, ossia le configurazioni.
== Definizione ==
Dato un insieme <math>S</math> di <math>n</math> oggetti si vogliono contare le configurazioni che possono assumere <math>k</math> oggetti tratti da questo insieme, e per far ciò bisogna precisare due punti importanti:
Riga 12 ⟶ 10:
=== Permutazioni semplici (senza ripetizioni) ===
Una
:<math>P_{n} = n \cdot (n - 1) \cdot (n-2) \cdot \dots \cdot 1 = n!</math>
Da cui si deduce come caso particolare <math>P_1=1! = 1</math>. Per completare la definizione di fattoriale mantenendone le proprietà si pone: <math>P_0=0! = 1 </math><ref name=unibo>{{cita web|lingua=|capitolo=|titolo=Cenni di calcolo combinatorio|autore=|url=http://progettomatematica.dm.unibo.it/Prob2/2calcolocombinatorio.html|sito=Università di Bologna}}</ref>
Riga 18 ⟶ 16:
====Esempi====
*Le permutazioni degli elementi dell'insieme <math>\left\{a,\,b,\,c \right\}</math> sono <math>3! = 3 \cdot 2 \cdot 1 = 6</math>: <math>abc,\,bac,\,bca,\,cab,\,cba,\,acb</math>.
*In quanti modi possibili si può
:La parola MONTE è composta da <math>5</math> lettere diverse tra loro, quindi <math>n=5</math>;
:Le permutazioni possibili sono:
Riga 35 ⟶ 33:
====Esempi====
* Le permutazioni di <math>\left\{a,\,a,\,b \right\}</math> sono: <math>\frac{3!}{2! \cdot 1!} = 3</math>, ossia: <math>aab,\,aba,\,baa</math>.
* In quanti modi è possibile
:Le lettere contenute nella parola sono <math>n=8</math>; gli elementi che si ripetono sono:
:la lettera F <math>(k_1=2)</math>
Riga 45 ⟶ 43:
=== Dismutazioni ===
{{vedi anche|Dismutazione (matematica)}}
Sono dette
:<math>\sum_{i=0}^n \left (-1 \right)^ i \frac{n!}{i!} \sim \frac{n!}{e}</math>
Riga 63 ⟶ 61:
:<math>P_{n} = D_{n,n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = \frac{n!}{1} = n!</math><ref name=unibo />
====Esempi====
*Le disposizioni semplici di lunghezza 2 degli elementi dell'insieme <math>\left\{1,\,2,\,3,\,4,\,5 \right\}</math> sono <math>\frac{5!}{(5-2)!} = \frac{5!}{3!} = \frac{120}{6} = 20</math>, ossia sono i numeri: <math>12,\,13,\,14,\,15,\,21,\,23,\,24,\,25,\,31,\,32,\,34,\,35,\,41,\,42,\,43,\,45,\,51,\,52,\,53,\,54</math>.
Riga 83 ⟶ 77:
:ossia: <math>11,\,12,\,13,\,14,\,15,\,21,\,22,\,23,\,24,\,25,\,31,\,32,\,33,\,34,\,35,\,41,\,42,\,43,\,44,\,45,\,51,\,52,\,53,\,54,\,55</math>.
* I
== Combinazioni (sequenze non ordinate) ==
Riga 89 ⟶ 83:
=== Combinazioni semplici (senza ripetizioni) ===
Si chiama combinazione semplice una presentazione di elementi di un insieme nella quale non ha importanza l'ordine dei componenti e non si può ripetere lo stesso elemento più volte. La collezione delle combinazioni di <math>k</math> elementi estratti da un insieme <math>S</math> di <math>n</math> oggetti distinti si può considerare ottenuta dalla collezione delle disposizioni semplici di lunghezza <math>k</math> degli elementi di <math>S</math> ripartendo tali sequenze nelle
:<math>C_{n,k} = \frac{D_{n,k}}{P_k} = \frac{n!}{k!(n-k)!} = {n \choose k}</math><ref name=unibo />
Riga 111 ⟶ 105:
== Bibliografia ==
* {{cita libro|autore=[[Mauro Cerasoli]]|coautori=[[Franco Eugeni]]; [[Marco Protasi]]|titolo=Elementi di matematica discreta|anno=1988|editore=Zanichelli|città=Bologna|ISBN=978-88-08-03858-6}}
* {{cita libro|autore=Sheldon M. Ross|titolo=Calcolo delle probabilità|anno=2013|editore=Apogeo|città=Milano|ISBN=978-88-38-78860-4}}
Riga 124 ⟶ 118:
==Altri progetti==
{{Interprogetto|commons=Category:Combinatorics|preposizione=sul}}
== Collegamenti esterni ==
* {{Collegamenti esterni}}
{{Algebra}}
| |||