Assiomi di Peano: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
→Significato matematico degli assiomi: modificato il testo in senso più chiaro e rigoroso. Etichette: Annullato Modifica visuale |
m sistemazione fonti, smistamento lavoro sporco e fix vari |
||
(Una versione intermedia di un altro utente non mostrate) | |||
Riga 1:
{{F|
Gli '''assiomi di Peano''' sono un gruppo di [[Assioma (matematica)|assiomi]] ideati dal matematico [[Giuseppe Peano]] al fine di definire assiomaticamente l'insieme dei [[numeri naturali]]. Un modo informale di descrivere gli assiomi può essere il seguente:
Riga 7:
#Numeri diversi hanno successori diversi
#0 non è il successore di alcun numero naturale
#Ogni sottoinsieme di numeri naturali che contenga lo zero e il successore di ogni proprio elemento
</div>
Si prende 0 o 1 a seconda del modello dei numeri naturali voluto. Oltre a questi assiomi, Peano sottintende anche gli [[assiomi logici]] che gli permettono di operare con la [[logica]] simbolica.
== Significato matematico degli assiomi ==
In termini più precisi
<blockquote style="padding: 1em; border: 2px dotted red;">
Riga 28:
* (P1) ci dice che l'insieme <math>\mathbb N</math> non è [[insieme vuoto|vuoto]] specificandone un elemento (<math>0</math>);
* (P2) afferma l'esistenza di una funzione <math>S</math> (la ''funzione successore'') di cui l'insieme <math>\mathbb N</math> è [[dominio (matematica)|dominio]].
* (P3) dice che <math>S</math> è una [[funzione iniettiva]]; questo ci permette di escludere modelli in cui partendo da <math>0</math>
* (P4) dice che <math>0</math> non è
* (P5), l'ultimo assioma di Peano, è anche noto con il nome di [[Principio di induzione]]
== Unicità del modello a meno di isomorfismi ==
Riga 46:
::allora <math>U=X</math>
Un sistema di Peano è dunque un [[modello (logica)|modello]] valido degli assiomi di Peano. Il modello più naturale per gli assiomi è la struttura <math>(\mathbb N, 0, S)</math>, tuttavia questa '''non''' è l'unica a verificare gli assiomi. Un esempio di sistema di Peano diverso da <math>(\mathbb N , 0, S)</math> si ha prendendo come <math>X</math> l'insieme dei numeri pari positivi <math>\{2,4,6,...\}</math>, <math>x_0:=2</math> e <math>s(x):=x+2</math>.
Un ''[[isomorfismo]]'' tra due ''sistemi di Peano'' <math>(A,a_0,s)</math> e <math>(B,b_0,t)</math> è una [[biiezione]] <math>f:A \to B</math> tale che:
|