Circuito resistivo: differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica |
Funzionalità collegamenti suggeriti: 3 collegamenti inseriti. |
||
(34 versioni intermedie di 21 utenti non mostrate) | |||
Riga 1:
Un '''circuito resistivo''' è un [[circuito elettrico]] formato da una o più sorgenti di alimentazione e da soli elementi resistivi passivi (come [[Resistore|resistori]] o [[resistenze]]), privo di componenti attivi quali [[transistor]] o [[Amplificatore|amplificatori]] nonché di elementi reattivi come [[Induttore|induttori]] o [[Condensatore (elettrotecnica)|condensatori]]. In tali circuiti, la [[corrente elettrica]] percorre i resistori e viene dissipata principalmente sotto forma di calore, a causa della resistenza elettrica offerta dai componenti.<ref>{{Cita web|url=http://www.elettrotecnica.unina.it/files/lupo/upload/Capitolo%203.pdf|titolo=CIRCUITI RESISTIVI}}</ref>
{{F|elettrotecnica|aprile 2018|}}▼
I circuiti resistivi trovano impiego in numerose applicazioni, tra cui la limitazione della corrente, la protezione dei componenti elettronici, la divisione di tensione e la carica delle [[Batterie alcaline|batterie]]. Inoltre, sono utilizzati nella modellizzazione di sistemi elettrici per l’analisi di circuiti più complessi. <ref>{{Cita libro|titolo=“Fundamentals of Electric Circuits”, Charles K. Alexander & Matthew N.O. Sadiku, 6th Edition, McGraw-Hill Education, 2016.}}</ref>
Il circuito resistivo elementare consiste in una sorgente di alimentazione collegata a un [[resistore]]. In questo circuito, la corrente elettrica attraversa il resistore, generando una caduta di tensione ai suoi capi. La prima [[legge di Ohm]] descrive la relazione tra le [[Grandezza fisica|grandezze fisiche]] fondamentali del circuito, secondo la seguente formula:
:<math>I=\frac {\operatorname V}{\operatorname R}</math>
dove:
* I è la corrente in [[ampere]] (A).
* V è la tensione in [[volt]] (V).
* R è la resistenza in [[ohm]] (Ω).
In un circuito resistivo è fondamentale considerare la [[caduta di tensione]] attraverso ciascun resistore e la loro configurazione, che può essere in serie o in parallelo, al fine di determinare la corrente totale e la tensione complessiva nel circuito.<ref>{{Cita libro|titolo=“Electrical Engineering: Principles and Applications”, Allan R. Hambley, 7th Edition, Pearson, 2017.}}</ref>
== Calcolo dell'intensità di corrente con generatore di tensione DC ==
[[File:Resistive circuit.png|thumb|300px|Esempio di circuito resistivo. L'intensità di corrente nel circuito è pari a 0,072 ampere, calcolata come il rapporto tra la tensione del generatore e la resistenza del resistore: 36 V / 500 Ω = 0,072 A.]]
Per calcolare l'[[intensità di corrente]] che attraversa ciascun componente in un circuito resistivo, si applica la [[Legge di Ohm]], la quale stabilisce che l'intensità di corrente ''I'' è pari al rapporto tra la tensione ''V'' ai capi del componente e la sua resistenza ''R'':
:<math>I=\frac {\operatorname V}{\operatorname R}</math>
:<ref>{{Cita libro|titolo=Sedra, Adel S.; Smith, Kenneth C. (2010). "Microelectronic Circuits" (6th ed.). Oxford University Press.}}</ref>
== Calcolo dell'intensità di corrente con generatore di tensione DC e termistore ==
In un [[termistore]], l'intensità di corrente varia in
== Calcolo della potenza dissipata da un resistore in un circuito resistivo con generatore di tensione DC ==
[[File:Resistive circuit with thermistor.png|200px|thumb|Circuito resistivo con generatore di tensione e termistore. La potenza dissipata dal resistore R1 è di circa 2,81 Watt, calcolata come 500 Ω × (0,072 A)<sup>2</sup> = 2,81 W.]]
La [[potenza elettrica]] <math>P</math> dissipata da un resistore in un circuito resistivo si calcola moltiplicando la resistenza <math>R</math> per il quadrato dell'intensità di corrente <math>I</math> che lo attraversa:
:<math>P_{dissipata} = R \cdot I^2</math>
== Intensità di corrente con circuito di tensione AC ==▼
Questa espressione deriva dalla definizione di potenza elettrica, data dalla formula <math>P = V \cdot I</math><ref>{{Cita libro|curatore=Luigi Caligaris|curatore2=Stefano Fava|curatore3=Carlo Tomasello|titolo=Manuale di meccanica|edizione=Seconda Edizione|p=L-21|capitolo=Sezione L "Elettrotecnica ed elettronica", cap. 2.14|ISBN=978-88-203-6645-2}}</ref>. Sostituendo la tensione <math>V</math> con il prodotto della corrente e della resistenza, secondo la prima legge di Ohm (<math>V = I \cdot R</math>), si ottiene la formula precedente. In modo analogo, sostituendo la corrente <math>I</math> con il rapporto tra tensione e resistenza (<math>I = V / R</math>), è possibile esprimere la potenza come:
:<math>P_{dissipata} = \frac{V^2}{R}</math> <ref>{{Cita libro|titolo=Fundamentals of Electric Circuits" di Charles K. Alexander e Matthew N. O. Sadiku (5ª edizione, McGraw-Hill, 2013)}}</ref>
In un '''circuito resistivo''' alimentato da un [[generatore di tensione]] alternata (AC), la tensione varia nel tempo seguendo un'onda sinusoidale, caratterizzata da frequenza e ampiezza specifiche. Di conseguenza, anche l'intensità di corrente nel circuito assume un andamento sinusoidale con la stessa frequenza.
Quando la resistenza del circuito è maggiore di 1 Ω, l'ampiezza (valore massimo) dell'onda della corrente risulta inferiore a quella della tensione. Se la resistenza è esattamente pari a 1 Ω, le ampiezze di corrente e tensione sono uguali. Infine, se la resistenza è inferiore a 1 Ω, l'ampiezza della corrente supera quella della tensione. <ref>{{Cita libro|titolo="Electrical Engineering: Principles and Applications" di Allan R. Hambley (6ª edizione, Pearson, 2017)}}</ref>
== Note ==
<references />
== Voci correlate ==
* [[Circuito elettrico]]
[[Categoria:Elettronica]]
|