Write amplification: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Recupero di 1 fonte/i e segnalazione di 0 link interrotto/i.) #IABot (v2.0.9.5
Recupero di 2 fonte/i e segnalazione di 0 link interrotto/i.) #IABot (v2.0.9.5
 
(Una versione intermedia di un altro utente non mostrate)
Riga 1:
{{T|inglese|argomento = informatica|data = febbraio 2015}}
[[File:Write Amplification on SSD.svg|alt=Un SSD può sperimentare il fenomeno della write amplification come risultato sia della garbage collection sia degli algoritmi di livellamento dell'usura (wear leveling), aumentando in questo modo le scritture verso il drive e riducendone nel contempo in parte la vita utile.[1]|miniatura|Un SSD può sperimentare il fenomeno della write amplification come risultato sia della garbage collection sia degli algoritmi di livellamento dell'usura (wear leveling), aumentando in questo modo le scritture verso il drive e riducendone nel contempo in parte la vita utile.<ref name="IBM_WA" />]]
'''''Write amplification''''' ('''WA''', {{Lett|amplificazione della scrittura}}) è un fenomeno collaterale negativo legato alle modalità di scrittura delle [[memoria flash|memorie flash]] e dei [[solid-state drive|dischi allo stato solido]] (''solid state drives'', SSDs) tale per cui il quantitativo di scritture fisiche sul chip di memoria è un multiplo rispetto alla quantità di dati effettivi da memorizzare.
Riga 9 ⟶ 8:
I fattori che possono condizionare la proliferazione di scritture di un SSD sono di varia natura. Alcuni possono essere controllati durante l'utilizzo mentre altri sono intrinseci alla tecnologia di scrittura di questo tipo di dispositivi.
 
[[Intel]]<ref name="Lucchesi">{{Cita web |url=http://www.silvertonconsulting.com/newsletterd/SSDf_drives.pdf |titolo=SSD Flash drives enter the enterprise |autore=Lucchesi, Ray |data=settembre 2008 |editore=Silverton Consulting |accesso=18 giugno 2010 |urlarchivio=https://web.archive.org/web/20110531215833/http://www.silvertonconsulting.com/newsletterd/SSDf_drives.pdf |dataarchivio=31 maggio 2011 |urlmorto=sì }}</ref> e [[Western Digital|SiliconSystems]] (acquisita da [[Western Digital]] nel 2009)<ref name="Zsolt_Silicon_Systems">{{Cita web|url=http://www.storagesearch.com/siliconsystems.html |titolo=Western Digital Solid State Storage - formerly SiliconSystems |autore=Kerekes, Zsolt |editore=ACSL |accesso=19 giugno 2010}}</ref> usano il termine ''write amplification'' nella loro documentazione e nelle loro pubblicazioni già dal 2008. La ''write amplification'' è misurata tipicamente dal rapporto fra il numero di scritture realmente eseguite sulla flash e il numero scritture richieste dall'host. Senza algoritmi di compressione, la ''write amplification'' non può scendere sotto al valore di 1. Usando algoritmi di compressione, [[SandForce]] dichiara di raggiungere valori tipici di write amplification pari a 0.5,<ref name="Anand_WA">{{Cita web |url=https://www.anandtech.com/show/2899 |titolo=OCZ's Vertex 2 Pro Preview: The Fastest MLC SSD We've Ever Tested |autore=Shimpi, Anand Lal |data=31 dicembre 2009 |editore=[[AnandTech]] |accesso=16 giugno 2011 |dataarchivio=23 giugno 2011 |urlarchivio=https://web.archive.org/web/20110623145121/http://www.anandtech.com/show/2899 |urlmorto=sì }}</ref> con picchi che possono scendere fino a 0.14 con il controller SF-2281.<ref>{{Cita web|url= https://www.tomshardware.com/reviews/ssd-520-sandforce-review-benchmark,3124-11.html |titolo= Intel SSD 520 Review: SandForce's Technology: Very Low Write Amplification |sito=Tomshardware|data=6 febbraio 2012 |nome=Andrew |cognome=Ku|accesso=10 febbraio 2012 }}</ref>
 
== Funzionamento elementare di un SSD ==
Riga 121 ⟶ 120:
[[File:Garbage Collection.png|thumb|upright=1.5|Le pagine sono scritte nei blocchi fino a quando non vengono riempiti. Poi le pagine con le informazioni attuali sono spostate in nuovi blocchi e quelli precedenti vengono cancellati<ref name="IBM_WA" />]]
 
I dati sono scritti sulla memoria flash in unità chiamate pagine (costituite da più celle). La memoria può essere cancellata solo in unità più grandi chiamate blocchi (costituiti da più pagine).<ref name="L Smith">{{Cita web |url=http://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf |titolo=NAND Flash Solid State Storage Performance and Capability – an In-depth Look |autore=Thatcher, Jonathan |data=18 agosto 2009 |editore=SNIA |accesso=28 agosto 2012 |dataarchivio=7 settembre 2012 |urlarchivio=https://web.archive.org/web/20120907062956/http://www.snia.org/sites/default/education/tutorials/2009/spring/solid/JonathanThatcher_NandFlash_SSS_PerformanceV10-nc.pdf |urlmorto=sì }}</ref> Se le informazioni in qualcuna delle pagine del blocco non sono più necessarie (sono anche chiamate pagine di stallo), solo le pagine con informazioni valide in quel blocco sono lette e riscritte in un altro blocco libero precedentemente pulito.<ref name="K Smith" /> Successivamente le pagine lasciate libere dal non aver mosso le informazioni di stallo sono libere per i nuovi dati. Questo processo è chiamato [[garbage collection]] (GC).<ref name="IBM_WA" /><ref name="OCZ_WA"/> Tutti gli SSD includono un qualche livello di garbage collection, che può variare nella quantità e nella velocità di esecuzione del processo.<ref name="OCZ_WA" />. Il garbage collection è un fattore determinante per la write amplification su di un SSD.<ref name="IBM_WA" /><ref name="OCZ_WA" />
 
Le operazioni di lettura non richiedono una cancellazione della memoria flash, pertanto non sono generalmente associate alla write amplification. Nella limitata ipotesi in un errore di disturbo dell'operazione di lettura, le informazioni in quel blocco sono lette e riscritte, ma questo non avrebbe comunque nessun impatto materiale sulla write amplification del dispositivo.<ref>{{Cita web |url=http://download.micron.com/pdf/technotes/nand/tn2917.pdf |titolo=TN-29-17: NAND Flash Design and Use Considerations |anno=2006 |editore=Micron |accesso=2 giugno 2010 |urlarchivio=https://web.archive.org/web/20110719170510/http://download.micron.com/pdf/technotes/nand/tn2917.pdf |dataarchivio=19 luglio 2011 |urlmorto=sì }}</ref>
Riga 131 ⟶ 130:
 
La prima fonte di over-provisioning è data dalla computazione della capacità e dall'uso di [[gigabyte]] (GB) piuttosto che di [[gibibyte]] (GiB). Sia i produttori di HDD che di SSD utilizzano il termine GB per rappresentare un ''gigabyte decimale'' 1,000,000,000 (=&nbsp;10<sup>9</sup>) di byte. Come la maggior parte degli altri dispositivi di allocazione elettronici, la memoria flash è assemblata in potenze di due, perciò calcolare la capacità fisica di un SSD dovrebbe basarsi su 1,073,741,824 (=&nbsp;2<sup>30</sup>) per ''GB binario'' o GiB. La differenza tra questi due valori è del 7.37% (=&nbsp;(2<sup>30</sup>&nbsp;− 10<sup>9</sup>)&nbsp;/ 10<sup>9</sup>&nbsp;× 100%). Perciò, un SSD di 128&nbsp;GB con 0% di over-provisioning fornisce 128,000,000,000 di byte all'utente (su un totale di 137,438,953,472). Questo 7.37% iniziale è tipicamente non calcolato nel numero totale di over-provisioning, e il vero quantitativo disponibile è solitamente inferiore, poiché una parte dello spazio è necessario al controller per tenere traccia di informazioni non relative al sistema operativo (come le flag di status di un blocco).<ref name="Jim_Bagley" /><ref name="Smith_2012" /> La cifra di 7.37% può in realtà estendersi fino a 9.95% nel caso di terabyte (TB), e poiché i produttori sfruttano questa divergenza tra le [[unità di misura|unità]] per i dispositivi da 1 o 2&nbsp;TB con le rispettive capacità di 1000 o e di 2000&nbsp;GB (931 e 1862&nbsp;GiB), rispettivamente, invece di 1024 e 2048&nbsp;GB (posto che 1&nbsp;TB = {{formatnum:1000000000000}} di byte in termini decimali, ma {{formatnum:1099511627776}} in termini binari).
 
<!-- da tradurre
The second source of over-provisioning comes from the manufacturer, typically at 0%, 7% or 28%, based on the difference between the decimal gigabyte of the physical capacity and the decimal gigabyte of the available space to the user. As an example, a manufacturer might publish a specification for their SSD at 100, 120 or 128&nbsp;GB based on 128&nbsp;GB of possible capacity. This difference is 28%, 7% and 0% respectively and is the basis for the manufacturer claiming they have 28% of over-provisioning on their drive. This does not count the additional 7.37% of capacity available from the difference between the decimal and binary gigabyte.<ref name="Jim_Bagley" /><ref name="Smith_2012" />
 
The third source of over-provisioning comes from known free space on the drive, gaining endurance and performance at the expense of reporting unused portions, and/or at the expense of current or future capacity. This free space can be identified by the operating system using the TRIM command. Alternately, some SSDs provide a utility that permit the end user to select additional over-provisioning. Furthermore, if any SSD is set up with an overall partitioning layout smaller than 100% of the available space, that unpartitioned space will be automatically used by the SSD as over-provisioning as well.<ref name="Smith_2012" /> Yet another source of over-provisioning is operating system minimum free space limits; some operating systems maintain a certain minimum free space per drive, particularly on the boot or main drive. If this additional space can be identified by the SSD, perhaps through continuous usage of the TRIM command, then this acts as semi-permanent over-provisioning. Over-provisioning often takes away from user capacity, either temporarily or permanently, but it gives back reduced write amplification, increased endurance, and increased performance.<ref name="Layton" /><ref name="Drossel" /><ref name="Anand_Spare_Area">{{Cita web |url=http://www.anandtech.com/show/3690/the-impact-of-spare-area-on-sandforce-more-capacity-at-no-performance-loss |titolo=The Impact of Spare Area on SandForce, More Capacity At No Performance Loss? |p=2 |autore=Shimpi, Anand Lal |editore=AnandTech.com |data=3 maggio 2010 |accesso=19 giugno 2010}}</ref><ref>{{Cita web | url=http://www.storagereview.com/intel_ssd_520_enterprise_review |titolo=Intel SSD 520 Enterprise Review |citazione=20% over-provisioning adds substantial performance in all profiles with write activity|nome=Kevin|cognome= OBrien |editore=Storage Review | data = 6 febbraio 2012 | accesso=29 novembre 2012 }}</ref><ref>{{Cita web | url=http://cache-www.intel.com/cd/00/00/45/95/459555_459555.pdf |urlarchivio=https://web.archive.org/web/20111125012226/http://cache-www.intel.com/cd/00/00/45/95/459555_459555.pdf |dataarchivio=25 novembre 2011 |titolo=White Paper: Over-Provisioning an Intel SSD |editore=Intel |formato=PDF |anno=2010 | accesso=29 novembre 2012 |urlmorto=sì }}</ref>
 
-->
 
Una semplice formula per calcolare il quantitativo di over-provision di un SSD è:<ref name="Smith_2012" />