Modulo (algebra): differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Annullata la modifica 119621131 di ValterVB (discussione) sicuramente è discutibile se tenere questo tipo di incipit, ma da almeno una quindicina d'anno tutte le voci di matematica sono impostate con quell'incipit. Se lo si vuole cambiare penso sia prima meglio fare una discussione più generale in proposito Etichetta: Annulla |
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti. |
||
(10 versioni intermedie di 7 utenti non mostrate) | |||
Riga 1:
{{F|algebra|dicembre 2022}}
In [[matematica
Nonostante la definizione molto simile, i moduli possono avere proprietà radicalmente diverse da quelle degli spazi vettoriali: ad esempio, non tutti i moduli possiedono una [[base (algebra lineare)|base]], e quindi non è possibile definire una [[dimensione#Dimensione di Hamel|dimensione]] che li caratterizzi. Capire quali proprietà degli spazi vettoriali siano valide anche per i moduli - e sotto quali ipotesi sull'anello ''A'' - è parte integrante della teoria dei moduli.
Riga 21 ⟶ 22:
Qualora si voglia sottolineare questo assioma, si parla di ''modulo unitario''; in generale, tuttavia, quando l'anello è unitario si assume automaticamente che anche il modulo lo sia.
Un modo alternativo di vedere la definizione è attraverso la nozione di [[azione di gruppo|azione]]: per un fissato elemento <math>a\in A</math>, l'applicazione <math>\mu_a:M\longrightarrow M</math> tale che <math>\mu_a(v)=av</math> è un [[omomorfismo di gruppi|omomorfismo]] di ''M'' in sé stesso, e di conseguenza (usando il secondo e il terzo assioma di modulo) l'applicazione che associa ad ogni <math>a\in A</math> la moltiplicazione <math>\mu_a</math> è un [[omomorfismo di anelli]] tra ''A'' e l'insieme <math>End(M)</math> degli endomorfismi di ''M''. Questa osservazione costituisce il ponte tra la teoria dei moduli e la [[Rappresentazione dei gruppi|teoria delle rappresentazioni]], che studia le azioni dei gruppi sugli spazi vettoriali, o equivalentemente le azioni di anello delle corrispondenti [[algebra di gruppo|algebre di gruppo]].
== Esempi ==
* Quando l'anello ''A'' è un [[campo (matematica)|campo]], il modulo (bilatero grazie alla commutatività dei campi) risulta essere uno [[spazio vettoriale]].
* Un [[gruppo abeliano]] può essere considerato come modulo sull'anello degli interi, cioè come <math>\mathbb{Z}</math>-modulo, in un modo unico: per ogni generico ''x'' del gruppo e per ogni ''n'' intero positivo basta definire <math>nx</math> come la somma di ''n'' repliche dell'elemento ''x'', definendo naturalmente <math>0x=0</math> e <math>(-n)x=-(nx)</math>. La teoria dei gruppi abeliani si può estendere in maniera naturale ai moduli sopra [[dominio ad ideali principali|domini ad ideali principali]].
* Un [[ideale (matematica)|ideale]] sinistro di un anello ''A'' è naturalmente un ''A''-modulo sinistro, e analogamente un ideale destro è un ''A''-modulo destro.
* Se ''A'' è un generico anello e ''n'' è un [[numero naturale]], allora il [[prodotto cartesiano]] <math>A^n</math>, dotato della moltiplicazione componente per componente, è un modulo (sia destro che sinistro) su ''A''. In particolare quando ''n'' = 1, ''A'' stesso è un ''A''-modulo, in cui la moltiplicazione per scalare è la moltiplicazione dell'anello.
* Se ''S'' è un [[insieme]] non vuoto, ''M'' è un ''A''-modulo sinistro, e <math>M^S</math> è la famiglia di tutte le [[funzione (matematica)|funzioni]] <math>f:S\longrightarrow M</math>, allora <math>M^S</math> può essere reso un ''A''-modulo sinistro definendo l'addizione termine a termine (<math>(f+g)(s)=f(s)+g(s)</math>) e la moltiplicazione attraverso la distributività (<math>(rf)(s)=r(f(s))</math>).
Riga 62 ⟶ 58:
Tuttavia, non sempre è possibile trovare un insieme di generatori [[indipendenza lineare|linearmente indipendente]], ed anzi esistono moduli non nulli in cui nessun elemento è linearmente indipendente: ad esempio, se ''A'' è un anello e ''I'' un suo ideale, allora nessun elemento di <math>A/I</math> è linearmente indipendente, in quanto <math>iv=0</math> per ogni <math>i\in I\subseteq A</math> e per ogni <math>v\in A/I</math>.
Nel caso in cui una base (ovvero un [[insieme di generatori]] linearmente indipendente) esista, il modulo è detto [[modulo libero|libero]]; quando questo avviene, il modulo è isomorfo alla [[somma diretta]] di un numero di copie uguale alla [[cardinalità]] della sua base e, se questo è finito e uguale ad ''n'', al modulo <math>A^n</math>. In generale, questo numero ''n'' non è unico: possono cioè esserci casi in cui i moduli <math>A^n</math> ed <math>A^m</math> sono isomorfi, sebbene ''n'' ed ''m'' siano diversi. Questo non può avvenire se ''A'' è commutativo oppure se è [[anello noetheriano|noetheriano]]; in tal caso, ''n'' viene detto ''rango'' del modulo libero.<ref>{{SpringerEOM|title=Rank of a module|author=V.E. Govorov}}</ref><ref>{{cita libro|autore=Paul Moritz Cohn|titolo=Introduction to ring theory|lingua=
Nel caso degli spazi vettoriali (ovvero quando ''A'' è un campo), tutti i moduli hanno una base, ovvero tutti i moduli sono liberi; in virtù dell'esempio precedente, segue anche che se tutti gli ''A''-moduli sono liberi, allora ''A'' è un [[corpo (matematica)|corpo]]. In questo caso, il rango coincide con la [[dimensione di Hamel|dimensione]] dello spazio vettoriale.
== Decomponibilità ==
Un modulo che è privo di sottomoduli non banali (cioè <math>\{0\}</math> e il modulo stesso) è detto ''semplice'' mentre, nel caso in cui possa essere scritto come somma diretta di moduli semplici, è detto ''semisemplice''. Mentre tutti gli spazi vettoriali sono semisemplici (possono sempre essere scritti come [[somma diretta]] di sottospazi di dimensione 1), così come tutti i moduli liberi, in generale esistono moduli che posseggono sottomoduli non banali, ma non possono essere scritti come somma diretta di due suoi sottomoduli: essi sono detti ''indecomponibili''. Tutti i moduli semplici sono indecomponibili, ma non viceversa: ad esempio, se <math>p</math> è un [[numero primo]], lo <math>\Z</math>-modulo <math>\Z/p^2\Z</math> non è semplice, in quanto contiene il sottomodulo <math>p\Z/p^2\Z=\{0,p,2p,\ldots,(p-1)p\}</math>, che è il suo unico sottomodulo non banale; di conseguenza, <math>\Z/p^2\Z</math> è indecomponibile ma non semplice.
Se tutti gli <math>A</math>-moduli sono semisemplici, <math>A</math> stesso è detto (anello) semisemplice; una condizione sufficiente perché questo avvenga è che <math>A</math> sia semisemplice come <math>A</math>-modulo. Un caso di grande importanza per la [[Rappresentazione dei gruppi|teoria delle rappresentazioni]] è il [[teorema di Maschke]]: se <math>G</math> è un [[gruppo finito]] e <math>k</math> è un [[campo (matematica)|campo]] [[chiusura algebrica|algebricamente chiuso]], allora l'[[algebra di gruppo]] <math>k[G]</math> è semisemplice se e solo se la [[Caratteristica (algebra)|caratteristica]] di <math>k</math> non divide l'ordine di <math>G</math>.
È possibile anche affrontare il problema di stabilire una decomposizione "canonica" dei moduli su un anello non semisemplice, anche se in tal caso non tutti gli addendi possono essere semplici; un caso generale è dato dalla decomposizione in sottomoduli indecomponibili, che è possibile se la [[lunghezza di un modulo|lunghezza]] del modulo è finita ([[teorema di Krull-Schmidt]]). Nel caso dei [[dominio ad ideali principali|domini ad ideali principali]] (PID), si ottiene per i moduli finitamente generati una classificazione analoga a quella dei gruppi abeliani finitamente generati: se <math>A</math> è un PID e <math>M</math> un <math>A</math>-modulo finitamente generato, allora
Riga 75 ⟶ 71:
:<math>M\simeq A^k\oplus A/(q_1)\oplus A/(q_2)\oplus\cdots\oplus A/(q_n),</math>
dove i <math>q_i</math> sono potenze di [[elemento primo|elementi primi]] di <math>A</math>. Una conseguenza di questa classificazione è l'esistenza della [[forma canonica di Jordan]] per [[applicazione lineare|applicazioni lineari]] su uno spazio vettoriale su un [[campo algebricamente chiuso]].
== Note ==
Riga 81 ⟶ 77:
== Bibliografia ==
* {{cita libro|autore=[[Michael Atiyah]] e [[Ian G. Macdonald]]|titolo=Introduction to Commutative Algebra|editore=Westview Press|anno=1969|isbn=0-201-40751-5|lingua=
== Collegamenti esterni ==
* {{Collegamenti esterni}}
{{Algebra}}
Riga 87 ⟶ 86:
{{Controllo di autorità}}
{{Portale|matematica}}
[[Categoria:Teoria dei moduli]]
[[Categoria:Strutture algebriche]]
|