Modulo (algebra): differenze tra le versioni
Contenuto cancellato Contenuto aggiunto
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti. |
Funzionalità collegamenti suggeriti: 2 collegamenti inseriti. |
||
(3 versioni intermedie di 3 utenti non mostrate) | |||
Riga 1:
{{F|
In [[matematica]], un '''modulo''' è una [[struttura algebrica]] che generalizza il concetto di [[spazio vettoriale]] richiedendo che gli [[Scalare (matematica)|scalari]] non costituiscano un [[campo (matematica)|campo]] ma un [[anello (algebra)|anello]]: un modulo su un anello ''A'' è quindi un [[gruppo abeliano]] ''M'' su cui è definita un'operazione che associa ad ogni elemento di ''A'' e ad ogni elemento di ''M'' un nuovo elemento di ''M''.
Riga 22:
Qualora si voglia sottolineare questo assioma, si parla di ''modulo unitario''; in generale, tuttavia, quando l'anello è unitario si assume automaticamente che anche il modulo lo sia.
Un modo alternativo di vedere la definizione è attraverso la nozione di [[azione di gruppo|azione]]: per un fissato elemento <math>a\in A</math>, l'applicazione <math>\mu_a:M\longrightarrow M</math> tale che <math>\mu_a(v)=av</math> è un [[omomorfismo di gruppi|omomorfismo]] di ''M'' in sé stesso, e di conseguenza (usando il secondo e il terzo assioma di modulo) l'applicazione che associa ad ogni <math>a\in A</math> la moltiplicazione <math>\mu_a</math> è un [[omomorfismo di anelli]] tra ''A'' e l'insieme <math>End(M)</math> degli endomorfismi di ''M''. Questa osservazione costituisce il ponte tra la teoria dei moduli e la [[Rappresentazione dei gruppi|teoria delle rappresentazioni]], che studia le azioni dei gruppi sugli spazi vettoriali, o equivalentemente le azioni di anello delle corrispondenti [[algebra di gruppo|algebre di gruppo]].
== Esempi ==
* Quando l'anello ''A'' è un [[campo (matematica)|campo]], il modulo (bilatero grazie alla commutatività dei campi) risulta essere uno [[spazio vettoriale]].
* Un [[gruppo abeliano]] può essere considerato come modulo sull'anello degli interi, cioè come <math>\mathbb{Z}</math>-modulo, in un modo unico: per ogni generico ''x'' del gruppo e per ogni ''n'' intero positivo basta definire <math>nx</math> come la somma di ''n'' repliche dell'elemento ''x'', definendo naturalmente <math>0x=0</math> e <math>(-n)x=-(nx)</math>. La teoria dei gruppi abeliani si può estendere in maniera naturale ai moduli sopra [[dominio ad ideali principali|domini ad ideali principali]].
* Un [[ideale (matematica)|ideale]] sinistro di un anello ''A'' è naturalmente un ''A''-modulo sinistro, e analogamente un ideale destro è un ''A''-modulo destro.
* Se ''A'' è un generico anello e ''n'' è un [[numero naturale]], allora il [[prodotto cartesiano]] <math>A^n</math>, dotato della moltiplicazione componente per componente, è un modulo (sia destro che sinistro) su ''A''. In particolare quando ''n'' = 1, ''A'' stesso è un ''A''-modulo, in cui la moltiplicazione per scalare è la moltiplicazione dell'anello.
* Se ''S'' è un [[insieme]] non vuoto, ''M'' è un ''A''-modulo sinistro, e <math>M^S</math> è la famiglia di tutte le [[funzione (matematica)|funzioni]] <math>f:S\longrightarrow M</math>, allora <math>M^S</math> può essere reso un ''A''-modulo sinistro definendo l'addizione termine a termine (<math>(f+g)(s)=f(s)+g(s)</math>) e la moltiplicazione attraverso la distributività (<math>(rf)(s)=r(f(s))</math>).
Riga 62 ⟶ 58:
Tuttavia, non sempre è possibile trovare un insieme di generatori [[indipendenza lineare|linearmente indipendente]], ed anzi esistono moduli non nulli in cui nessun elemento è linearmente indipendente: ad esempio, se ''A'' è un anello e ''I'' un suo ideale, allora nessun elemento di <math>A/I</math> è linearmente indipendente, in quanto <math>iv=0</math> per ogni <math>i\in I\subseteq A</math> e per ogni <math>v\in A/I</math>.
Nel caso in cui una base (ovvero un [[insieme di generatori]] linearmente indipendente) esista, il modulo è detto [[modulo libero|libero]]; quando questo avviene, il modulo è isomorfo alla [[somma diretta]] di un numero di copie uguale alla [[cardinalità]] della sua base e, se questo è finito e uguale ad ''n'', al modulo <math>A^n</math>. In generale, questo numero ''n'' non è unico: possono cioè esserci casi in cui i moduli <math>A^n</math> ed <math>A^m</math> sono isomorfi, sebbene ''n'' ed ''m'' siano diversi. Questo non può avvenire se ''A'' è commutativo oppure se è [[anello noetheriano|noetheriano]]; in tal caso, ''n'' viene detto ''rango'' del modulo libero.<ref>{{SpringerEOM|title=Rank of a module|author=V.E. Govorov}}</ref><ref>{{cita libro|autore=Paul Moritz Cohn|titolo=Introduction to ring theory|lingua=
Nel caso degli spazi vettoriali (ovvero quando ''A'' è un campo), tutti i moduli hanno una base, ovvero tutti i moduli sono liberi; in virtù dell'esempio precedente, segue anche che se tutti gli ''A''-moduli sono liberi, allora ''A'' è un [[corpo (matematica)|corpo]]. In questo caso, il rango coincide con la [[dimensione di Hamel|dimensione]] dello spazio vettoriale.
Riga 81 ⟶ 77:
== Bibliografia ==
* {{cita libro|autore=[[Michael Atiyah]] e [[Ian G. Macdonald]]|titolo=Introduction to Commutative Algebra|editore=Westview Press|anno=1969|isbn=0-201-40751-5|lingua=
==
* {{Collegamenti esterni}}
{{Algebra}}
Riga 90 ⟶ 86:
{{Controllo di autorità}}
{{Portale|matematica}}
[[Categoria:Teoria dei moduli]]
[[Categoria:Strutture algebriche]]
|