Azoto: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
Nessun oggetto della modifica
m Tolgo evidenziazione testo da url
 
(10 versioni intermedie di 5 utenti non mostrate)
Riga 39:
|Elettronegatività = 3,04 ([[scala di Pauling]])
|Calore_specifico = 1 040 J/(kg·K)
|Conducibilità_elettrica =14,534 μΩ/m
|Conducibilità_termica = 0,02598 W/(m·K)
|Energia_1a_ionizzazione = 1 402,3 kJ/mol
Riga 62:
|Numero = 7
}}
L{{'}}'''azoto''' è un [[elemento chimico]] della [[tavola periodica degli elementi]] con simbolo '''N''' la cui forma prevalente è l''''''azoto molecolare''''', detto anche ''azoto biatomico,'' ''azoto diatomico,'' ''diazoto'' o semplicemente ''azoto'', formato da due [[atomo|atomi]] di azoto (N<sub>2</sub>).<ref name=":1">{{Cita libro|autore=James E. Brady|autore2=John R. Holum|titolo=Chimica|titolooriginale=Fundamentals of Chemistry 2nd ed.|edizione=9|annooriginale=1984|data=1996|editore=Zanichelli|città=Bologna|ISBN=88-08-20516-9}}</ref>
 
== Storia ==
Riga 69:
L'azoto, sotto forma di [[Cloruro d'ammonio|cloruro di ammonio]] (NH₄Cl) era conosciuto dagli [[Alchimia|alchimisti]] come "sal ammoniaco" ed era prodotto in [[Egitto]] riscaldando una [[miscela]] di [[Feci|sterco]], [[sale]] e [[urina]].<ref name=":28">{{Cita web|url=https://periodic-table.rsc.org/element/7/nitrogen|titolo=Nitrogen - Element information, properties and uses {{!}} Periodic Table|sito=periodic-table.rsc.org|accesso=21 marzo 2025}}</ref>
 
A partire dal [[1500]] gli [[Scienziato|scienziati]] iniziarono a proporre l'[[idea]] della presenza in un altro [[gas]] nell'[[atmosfera]] oltre all'[[ossigeno]] e all'[[anidride carbonica]], ma non furono in grado di provarlo fino al [[1700]].<ref name=":2">{{Cita web|lingua=en|url=https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreTexts)/08:_Chemistry_of_the_Main_Group_Elements/8.09:_The_Nitrogen_Family/8.9.02:_Chemistry_of_Nitrogen_(Z7)|titolo=8.9.2: Chemistry of Nitrogen (Z=7)|sito=Chemistry LibreTexts|data=5 agosto 2022|accesso=18 marzo 2025}}</ref>
{{dx|[[File:Lavoisier decomposition air.png|thumbmin|leftsinistra|Attrezzatura utilizzata da Lavoisier per identificare l'azoto e l'ossigeno nell'aria.]]}}
Fu ottenuto negli [[anni 1760]] sia da [[Henry Cavendish]] che da [[Joseph Priestley]], rimuovendo l'[[ossigeno]] dall'[[aria]]. Notarono che l'azoto era in grado di spegnere una [[Candela (illuminazione)|candela]] accesa e che un [[Mus musculus|topo]] che respirava quel gas moriva rapidamente. Nessuno dei due, però, dedusse che fosse un elemento. La prima persona a suggerirlo fu un [[Giovinezza|giovane]] [[studente]], [[Daniel Rutherford]], nella sua [[tesi]] di [[Dottorato di ricerca|dottorato]] del [[settembre]] [[1772]] a [[Edimburgo]], in [[Scozia]].<ref name=":28" />
 
Riga 76:
''Escherichia coli''|rivista=Proceedings of the National Academy of Sciences|volume=44|numero=7|pp=671–682|accesso=20 marzo 2025|doi=10.1073/pnas.44.7.671|url=https://doi.org/10.1073/pnas.44.7.671}}</ref>
 
Secondo alcune fonti, il termine fu coniato nel [[1787]] dal chimico francese [[Louis-Bernard Guyton-Morveau]]. Il [[Parola|nome]] "''nitrogène''" fu invece suggerito dal [[chimico]] [[Lingua francese|francese]] [[Jean-Antoine Chaptal]] nel [[1790]],<ref name=":0">{{Cita web|lingua=it|url=https://www.treccani.it/vocabolario/azoto/|titolo=Ażòto - Significato ed etimologia - Vocabolario|sito=Treccani|accesso=18 marzo 2025}}</ref> quando si scoprì che l'azoto era presente nell'[[acido nitrico]] e nei [[Nitrato|nitrati]]. [[Antoine-Laurent de Lavoisier|Antoine Lavoisier]] propose invece il nome "''azote''", dal [[Lingua greca antica|greco antico]]: ἀζωτικός, che significa "senza vita". In [[Lingua inglese|inglese]] si è conservata la denominazione ''nitrogen'',<ref>{{Cita libro|titolo=Il Sansoni inglese. Dizionario English-Italian, italiano-inglese. Ediz. bilingue. Con CD-ROM|edizione=5|editore=Rizzoli Larousse|ISBN=8852501576}}</ref> mentre in [[Lingua tedesca|tedesco]] viene chiamato ''stickstoffStickstoff''.<ref>{{Cita libro|titolo=Tedesco-italiano, italiano-tedesco|collana=I Dizionari Sansoni|data=1989|editore=Sansoni|ISBN=978-88-383-0930-4}}</ref>
 
== Abbondanza e disponibilità ==
{{dx|[[File:Northern Lights 02.jpg|thumbmin|uprightverticale=1.4|leftsinistra|[[Aurora boreale]]: la colorazione blu è dovuta all'azoto, mentre la colorazione verde è dovuta all'ossigeno.]]}}
 
=== Abbondanza ===
Riga 120:
Negli organismi viventi, l'azoto può essere trovato sotto forma di gas all'interno delle [[Cellula|cellule]] e/o in forma [[Ossido|ossidata]] o [[Riduzione (chimica)|ridotta]]. In forma ridotta è il componente principale delle più importanti [[Macromolecola|macromolecole]] biologiche: le [[proteine]]/[[Polipeptide|polipeptidi]], il [[DNA]]/[[RNA]] e nei [[Polimero|polimeri]] degli [[Aminozuccheri|amminozuccheri]]. Altre molecole contenenti azoto sono le [[Porfirina|porfirine]] e alcuni [[Metabolita|metaboliti]] secondari delle piante.<ref name=":8" />
 
Da notare il fatto che l'azoto viene prodotto naturalmente dall{{'}}''[[Escherichia coli|E. coli]]'' ceppo K12<ref>{{Cita web|url=https://ecmdb.ca/compounds/M2MDB000616|titolo=E. coli Metabolome Database (ECMDB)}}</ref> e dal [[Plantago rhodosperma|''P. rhodosperma'']]''.''<ref>{{Cita web|lingua=en|url=https://www.wikidata.org/wiki/Q2370426|titolo=dinitrogen|accesso=19 marzo 2025}}</ref>
 
=== Disponibilità ===
Riga 274:
 
=== Reazioni nucleari ===
Nel [[1919]] [[Ernest Rutherford]] fece passare le [[Particella α|particelle alfa]] generate da un [[radionuclide]] naturale attraverso una camera contenente atomi di azoto e scoprì che veniva prodotta un'altra radiazione, più penetrante.<ref>{{Cita web|url=https://www.osti.gov/opennet/manhattan-project-history/Events/1890s-1939/exploring.htm#:~:text=In%201919,%20New%20Zealander%20Ernest%20Rutherford%20reported%20on,atom%22%20when%20bombarded%20with%20energetic%20%CE%B1%20(alpha)%20particles.|titolo=Manhattan Project: Exploring the Atom, 1919-1932|accesso=21 marzo 2025}}</ref> Dimostrò che questa nuova radiazione consisteva di [[protone|protoni]] di alta [[energia]] e concluse che questo era il risultato della conversione dei nuclei di azoto in nuclei di ossigeno. Rutherford ipotizzò che la cattura di una particella alfa da parte del nucleo dell'azoto produce un nucleo eccitato di fluoro-18, che a sua volta emette un protone formando nuclidi di ossigeno-17, un [[isotopo]] raro ma stabile:<ref>{{Cita pubblicazione|nome=Douglas|cognome=McKIE|data=1935|titolo=Daniel Rutherford and the Discovery of Nitrogen|rivista=Science Progress (1933- )|volume=29|numero=116|pp=650–660|accesso=21 marzo 2025|url=http://www.jstor.org/stable/43420938}}</ref>
:α + <sup>14</sup>N → <sup>18</sup>F* → <sup>17</sup>O + p
Nell'atmosfera, per effetto dei [[raggi cosmici]], avviene la seguente reazione:<ref>{{Cita web|lingua=EN|autore=zz_hugo|url=https://radioactivity.eu.com/articles/phenomenon/radiocarbon|titolo=Carbon-14|sito=radioactivity.eu.com|data=8 dicembre 2020|accesso=21 marzo 2025}}</ref>
Riga 394:
Un altro metodo è la [[decomposizione (chimica)|decomposizione]] termica di alcuni sali che contengono l'azoto, per esempio:<ref name=":30" />
:<chem>NH4NO2(aq) -> N2(g) + 2H2O</chem>
 
== Caratteristiche fisiche e chimico-fisiche ==
In [[condizioni standard]] e allo [[Stato quantico|stato puro]], l'azoto si presenta sotto forma di [[gas]] incolore, inodore, insapore e [[Inerte (chimica)|inerte]].<ref name=":11">{{Cita web|lingua=en|autore=PubChem|url=https://pubchem.ncbi.nlm.nih.gov/compound/nitrogen|titolo=Nitrogen|sito=pubchem.ncbi.nlm.nih.gov|accesso=19 marzo 2025}}</ref><ref>{{Cita web|lingua=en|url=https://go.drugbank.com/drugs/DB09152|titolo=Nitrogen|sito=go.drugbank.com|accesso=19 marzo 2025}}</ref> Più leggero dell'acqua, l'azoto molecolare [[Principio di Archimede|galleggia]].<ref name=":12" /> Il suo [[Coefficiente di ripartizione (chimica)|coefficiente di ripartizione]] [[1-ottanolo|ottanolo]]-[[acqua]] è pari a 0,1,<ref name=":11" /> mentre la [[solubilità]] in acqua si attesta pari a 1,81 x 10<sup>+4</sup> [[Grammo|mg]]/L a 21 [[Grado Celsius|°C]].<ref>{{Cita pubblicazione|nome=CHARLES S.|cognome=VENABLE|nome2=TYLER.|cognome2=FUWA|data=1º febbraio 1922|titolo=The Solubility of Gases in Rubber and Rubber Stock and Effect of Solubility on Penetrability|rivista=Journal of Industrial &amp; Engineering Chemistry|volume=14|numero=2|pp=139–142|accesso=19 marzo 2025|doi=10.1021/ie50146a022|url=https://doi.org/10.1021/ie50146a022}}</ref> L'azoto risulta inoltre: insolubile in [[etanolo]],<ref name=":16" /> lievemente solubile in [[Alcoli|alcol]]<ref>{{Cita pubblicazione|data=20 marzo 2007|titolo=Hawley's Condensed Chemical Dictionary, 15th ed By Richard J. Lewis, Sr. John Wiley &amp; Sons, Inc.: Hoboken, NJ. 2007. x + 1380 pp. $150.00. ISBN 978-0-471-76865-4.|rivista=Journal of the American Chemical Society|volume=129|numero=16|pp=5296–5296|accesso=19 marzo 2025|doi=10.1021/ja0769144|url=https://doi.org/10.1021/ja0769144}}</ref> e solubile in [[ammoniaca]].<ref name=":14" />
 
=== Strutturali ===
Riga 479 ⟶ 480:
 
==== Spettro UPS ====
[[File:UPS azoto mod.gif|thumbmin|Spettro UPS di N<sub>2</sub>]]
 
Il primo picco che si osserva nello [[spettroscopia fotoelettronica|spettro fotoelettronico]] UPS He I, quello a {{M|15,59|ul=eV}}, porta a N<sub>2</sub><sup>+</sup> (<sup>2</sup>Σ{{apici e pedici|b=g|p=+}}) strappando un elettrone dall'orbitale σ<sub>g</sub>2p. Mostra una struttura vibrazionale molto modesta, vi è solo un debole picco secondario distanziato dal primo di circa 0,267&nbsp;eV, quindi la costante vibrazionale di N{{apici e pedici|b=2|p=+}}(<sup>2</sup>Σ{{apici e pedici|b=g|p=+}}) è 1906,87 N m<sup>−1</sup>. È un valore inferiore a quello di N<sub>2</sub> ma ancora elevato, sintomo del fatto che il contributo legante dell'orbitale σ<sub>g</sub>2p è scarso.<ref name=":31">{{Cita pubblicazione|nome=Alf|cognome=Lofthus|nome2=Paul H.|cognome2=Krupenie|data=1º gennaio 1977|titolo=The spectrum of molecular nitrogen|rivista=Journal of Physical and Chemical Reference Data|volume=6|numero=1|pp=113–307|accesso=21 marzo 2025|doi=10.1063/1.555546|url=https://pubs.aip.org/aip/jpr/article-abstract/6/1/113/242180/The-spectrum-of-molecular-nitrogen?redirectedFrom=fulltext}}</ref>
Riga 488 ⟶ 489:
 
=== Termodinamiche ===
[[File:P-v-Diagramm N2.jpg|thumbmin|uprightverticale=1.6|[[Diagramma p-V]] dell'azoto]]
{| class="wikitable"
| colspan=2 style="background:#BDBEB3; text-align:center"|'''Caratteristiche termodinamiche di N<sub>2</sub>'''<ref>{{Cita web|url=https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Mask=1E9F#Thermo-Gas|titolo=NIST Chemistry WebBook, SRD 69 - Nitrogen|accesso=20 marzo 2025}}</ref>
Riga 531 ⟶ 532:
|-
| rowspan="6" |[[Pressione di vapore]] (Pa)<ref name=":16">{{Cita pubblicazione|nome=Rosa|cognome=Sierra-Amor|data=1º novembre 2001|titolo=CRC Handbook of Laboratory Safety, 5th ed. A. Keith Furr, ed. Boca Raton, FL: CRC Press LCC, 2000, 774 pp., $149.99. ISBN 0-8493-2523-4.|rivista=Clinical Chemistry|volume=47|numero=11|pp=2075–2075|accesso=19 marzo 2025|doi=10.1093/clinchem/47.11.2075a|url=https://doi.org/10.1093/clinchem/47.11.2075a}}</ref>
| -236&nbsp;°C
|1 (solido)
|-
| -232&nbsp;°C
|10 (solido)
|-
| -226,8&nbsp;°C
|100 (solido)
|-
| -220,2 &nbsp;°C
|1.000 (solido)
|-
| -221,1 &nbsp;°C
|10.000 (solido)
|-
| -159,9 &nbsp;°C
|100.000 (gassoso)
|-
Riga 586 ⟶ 587:
=== Stato solido ===
{{Vedi anche|Karol Olszewski}}
L'azoto [[Solidificazione|solidifca]] a -209,8&nbsp;°C.<ref name=":1" /> [[Karol Olszewski]] osservò per la prima volta l'azoto solido nel [[1884]], liquefacendo l'idrogeno con l'azoto liquido in evaporazione e permettendo poi all'idrogeno liquido di congelare l'azoto.<ref>{{Cita pubblicazione|nome=R.|cognome=Benoît|data=1878|titolo=RAOUL PICTET. — Mémoire sur la liquéfaction de l'oxygène, la liquéfaction et la solidification de l'hydrogène et sur les théories des changements d'état des corps; Archives des Sciences physiques et naturelles de Genève, t. LXI, p. 160, et Comptes rendus des séances de l'Académie des Sciences, t. LXXXV, p. 1214, et t. LXXXVI, p. 106|rivista=Journal de Physique Théorique et Appliquée|volume=7|numero=1|pp=92–97|accesso=21 marzo 2025|doi=10.1051/jphystap:01878007009201|url=https://doi.org/10.1051/jphystap:01878007009201}}</ref> Facendo evaporare l'azoto solido, Olszewski generò anche una temperatura estremamente bassa (48 K), che all'epoca rappresentava un record mondiale.<ref>{{Cita pubblicazione|nome=R. D.|cognome=Kleeman|data=29 aprile 1927|titolo=Properties of Substances in the Condensed State at the Absolute Zero of Temperature|rivista=Science|volume=65|numero=1687|pp=426–427|accesso=21 marzo 2025|doi=10.1126/science.65.1687.426|url=https://doi.org/10.1126/science.65.1687.426}}</ref>
 
Sono state osservate sei fasi solide dell'azoto, denominate [[alfa (lettera)|α]], [[beta (lettera)|β]], [[gamma (lettera)|γ]], [[delta (lettera)|δ]], [[epsilon (lettera)|ε]] e [[zeta (lettera greca)|ζ]], ma a [[pressione|pressioni]] inferiori a {{M|3500|ul=bar}} esistono solo le fasi [[Alfa (lettera)|alfa]] e [[Beta (lettera)|beta]]. La temperatura di [[Transizione di fase|transizione]] tra le due fasi alla pressione di 1&nbsp;bar è {{M|36,61|ul=K}}. La fase alfa, quella che esiste alla temperatura più bassa, ha un [[reticolo cubico a facce centrate]] {{M|p=(a &#61;|5660|ul=Å}}), mentre la fase beta un [[Sistema esagonale|reticolo esagonale]] ({{Val|p=a &#61;| 4036|u=Å}} e {{Val|p=c &#61;|6630|u=Å}}). La fase gamma ha un [[reticolo tetragonale a corpo centrato]]. Le altre fasi sono stabili solo a pressioni superiori a {{M|20000|u=bar}}.<ref>{{Cita pubblicazione|nome=N.|cognome=Fray|nome2=B.|cognome2=Schmitt|data=2009-12|titolo=Sublimation of ices of astrophysical interest: A bibliographic review|rivista=Planetary and Space Science|volume=57|numero=14-15|pp=2053–2080|lingua=en|accesso=21 marzo 2025|doi=10.1016/j.pss.2009.09.011|url=https://linkinghub.elsevier.com/retrieve/pii/S0032063309002736}}</ref>
Riga 722 ⟶ 723:
 
=== Reazioni nell'atmosfera ===
 
==== Chemosfera ====
Nella parte alta della [[chemosfera]], tra i [[65 (numero)|65]] e i [[120 (numero)|120]] [[Chilometro|km]], l'attività chimica principale riguarda le reazioni delle [[Specie chimica|specie]] atomiche, incluso l'azoto. Gli atomi coinvolti sono quelli che si producono per [[fotolisi]] dei gas atmosferici molecolari che reagiscono tra di loro e con le altre molecole presenti. Le reazioni predominanti che avvengono tra l'azoto e l'ossigeno sono:<ref name=":17">{{Cita pubblicazione|autore=Joseph Kaplan|autore2=William J. Schade|autore3=Charle A. Barth|coautori=Alvin F. Hildebarndt, Institute of Geophysics, University of California, Los Angeles, California, and the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California|anno=1960|mese=Settembre|titolo=ATOMIC REACTIONS IN THE UPPER ATMOSPHERE|rivista=Symposium on the Fundamental Aspects of Atomic Rearcions held at McGill University, Montreal, Que.|url=https://cdnsciencepub.com/doi/pdf/10.1139/v60-234}}</ref>
Riga 853:
Nonostante non abbiano significato fisico, i [[Stato di ossidazione|numeri di ossidazione]] sono spesso impiegati, soprattutto in ambito didattico, per razionalizzare la chimica degli elementi e per bilanciare le reazioni di [[ossidoriduzione]]. L'azoto in questo senso è uno degli elementi che presenta la maggior varietà, adottando tutti i valori da −3 a +5.<ref>{{Cita web|lingua=en|url=https://www.britannica.com/science/nitrogen-group-element/Variations-in-bonding-capacity|titolo=Nitrogen group element - Bonding Capacity, Variations, Properties {{!}} Britannica|accesso=22 marzo 2025}}</ref> Uno strumento efficace per visualizzare le stabilità [[termodinamica|termodinamiche]] relative dei diversi stati di ossidazione in [[soluzione acquosa]] può essere fornita da un [[diagramma di Frost]]:<ref>{{Cita pubblicazione|nome=Andrea|cognome=Pasquale|nome2=Maria Assunta|cognome2=Chiacchio|nome3=Federico|cognome3=Acciaretti|data=2024-03|titolo=The oxidation of d ‐galactose into mucic acid (galactaric acid): experimental and computational insights towards a bio‐based platform chemical|rivista=Asian Journal of Organic Chemistry|volume=13|numero=3|lingua=en|accesso=22 marzo 2025|doi=10.1002/ajoc.202300649|url=https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202300649}}</ref>
 
[[File:Frost azoto smallsize.gif|centercentro|500pxmin|verticale=2]]
 
Specie chimiche che hanno elevata stabilità termodinamica rispetto a numerose reazioni (che dunque spesso possono favorire le reazioni che le vedono come prodotti, vengono talvolta chiamate [[pozzi termodinamici]]. Fra queste si possono annoverare CO<sub>2</sub>, H<sub>2</sub>O, <nowiki>NaCl</nowiki> e appunto N<sub>2</sub>. Questa caratteristica dell'azoto è l'aspetto più evidente del diagramma. È però necessario osservare che la formazione di N<sub>2</sub> è [[Cinematica|cineticamente]] sfavorita, e quasi sempre la riduzione di nitrati e nitriti si ferma a NO<sub>2</sub> o NO, talvolta anche procedere fino a NH{{apici e pedici|b=4|p=+}}.<ref>{{Cita pubblicazione|nome=Richard T.|cognome=Jacobsen|nome2=Richard B.|cognome2=Stewart|data=1º ottobre 1973|titolo=Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63 K to 2000 K with Pressures to 10,000 Bar|rivista=Journal of Physical and Chemical Reference Data|volume=2|numero=4|pp=757–922|accesso=22 marzo 2025|doi=10.1063/1.3253132|url=https://pubs.aip.org/aip/jpr/article-abstract/2/4/757/241463/Thermodynamic-Properties-of-Nitrogen-Including?redirectedFrom=fulltext}}</ref><br />Si può notare che la chimica redox dei composti dell'azoto è significativamente influenzata dal [[pH]], in particolare nitrati e nitriti, che a pH bassi sono forti ossidanti, perdono quasi totalmente il loro potere ossidante in ambiente alcalino.<ref>{{Cita pubblicazione|nome=Denis|cognome=Johnson|nome2=Abdoulaye|cognome2=Djire|data=2023|titolo=Effect of pH on the Electrochemical Behavior and Nitrogen Reduction Reaction Activity of Ti2N Nitride MXene|rivista=Advanced Materials Interfaces|volume=10|numero=10|pp=2202147|lingua=en|accesso=22 marzo 2025|doi=10.1002/admi.202202147|url=https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202202147}}</ref>
[[File:Nitrogen-fixing cyanobacteria.png|miniaturamin|Azotofissazione nei cianobatteri]]
 
=== Azotofissazione ===
Riga 864:
== Composti dell'azoto ==
{{vedi anche|composti dell'azoto}}
 
== Applicazioni ==
Circa il 90% dell'azoto prodotto oggi viene utilizzato per fornire un'atmosfera inerte per processi o reazioni sensibili all'ossigeno, come la produzione dell'[[acciaio]], la [[Raffineria di petrolio|raffinazione del petrolio]] e il [[Confezionamento degli alimenti|confezionamento di alimenti]] e [[Farmaco|prodotti farmaceutici]].<ref name=":24" />
[[File:Ammonium nitrate 33,5 EC-fertilizer by Borealis.jpg|alt=Fertilizzante al nitrato d'ammonio|sinistra|miniaturamin|Fertilizzante al nitrato d'ammonio]]
 
=== Fertilizzanti ===
Riga 881 ⟶ 882:
* fertilizzanti azotati contenenti ammonio (NH4-N): [[Solfato d'ammonio|(NH<sub>4</sub>)<sub>2</sub>SO]]<sub>4</sub> (20% N), [[Cloruro d'ammonio|NH<sub>4</sub>Cl]] (24-26% N), ammoniaca anidra (82% N)
* fertilizzanti azotati contenenti sia NH4 che NO3-N: [[Nitrato d'ammonio|NH<sub>4</sub>NO<sub>3</sub>]] (33-34% N), nitrato di calcio e ammonio (20% N)
* fertilizzanti amidici che sono la forma organica di fertilizzanti contenenti azoto (N)[[File:Fistful of liquid nitrogen Nathan Myhrvold magical science dinner (26516294393).jpg|miniaturamin|Applicazioni dell'azoto liquido nella ristorazione]]
 
=== Applicazioni criogeniche dell'azoto liquido ===
Riga 904 ⟶ 905:
 
=== Elettronica ===
[[File:Transistors.agr.jpg|alt=Transistor|miniaturamin|Transistor]]
Nella produzione di componenti elettronici come [[transistor]], [[diodo|diodi]] e [[circuito integrato|circuiti integrati]] si usa l'azoto sia come gas vettore dei gas di processo, sia per la creazione di atmosfere inerti durante i trattamenti termici. Il [[grafene]] drogato con azoto ha un'eccezionale [[conduttività elettrica]] ed è un materiale altamente [[Rigidezza|flessibile]], qualità che lo rendono il materiale ideale per i [[Elettronica|dispositivi elettronici]] flessibili e indossabili del futuro.<ref name=":39">{{Cita libro|titolo=Nitrogen: From Discovery to Modern Energy Applications.|url=https://www.google.it/books/edition/Nitrogen/3OcfEQAAQBAJ?hl=it&gbpv=0|anno=2024|editore=SolveForce|città=Sudafrica}}</ref>
 
I [[transistor a effetto di campo]] realizzati con [[nanomateriali]] al carbonio drogato con azoto mostrano un'elevata [[mobilità elettrica]] ed elevate capacità di variazione della [[velocità]]; vengono utilizzati nei [[Conduttore elettrico|conduttori]] [[Trasparenza e traslucenza|trasparenti]] dei [[Monitor (computer)|monitor]] e dei [[touch screen]]. Al contempo i materiali nanocompositi potenziati all'azoto sono allo studio per essere applicati nell'[[elettronica stampata]] e nei [[transistor a film sottile]].<ref name=":39" />
[[File:Solar cell.png|alt=Cella fotovoltaica|sinistra|miniaturamin|Cella fotovoltaica]]
 
=== Fotonica ===
Riga 920 ⟶ 921:
 
=== Medicina e industria farmaceutica ===
[[File:CryoTherapy chamberr.jpg|miniaturamin|Camera crioterapica]]
Le applicazioni dell'azoto nell'industria farmaceutica sono molteplici e varie, ad esempio viene usato:<ref>{{Cita libro|autore=Fabris, L.|autore2=Rigamonti, A.|titolo=La fabbricazione industriale dei medicinali.|url=https://www.google.it/books/edition/La_fabbricazione_industriale_dei_medicin/q-INEAAAQBAJ?hl=it&gbpv=0|anno=2019|editore=Società Editrice Esculapio|città=Italia}}</ref>
 
Riga 936 ⟶ 937:
 
=== Altre applicazioni dell'azoto molecolare ===
[[File:Oil platform P-51 (Brazil).jpg|alt=Piattaforma petrolifera|sinistra|miniaturamin|Piattaforma petrolifera]]
Viene anche usato per:
 
Riga 949 ⟶ 950:
 
=== Applicazioni degli isotopi dell'azoto ===
[[File:PET-MIPS-anim.gif|alt=PET|miniaturamin|PET]]
Gli isotopi dell'azoto vengono principalmente utilizzati nei campi degli studi ambientali e [[Paleoambiente|paleoambientali]], della [[diagenesi]] dei sedimenti, della formazione ed evoluzione del suolo, negli studi [[Archeologia|archeologici]] e sulla [[dieta paleolitica]].<ref>{{Cita libro|nome=Pierre|cognome=Cartigny|nome2=Vincent|cognome2=Busigny|titolo=Nitrogen Isotopes|url=https://link.springer.com/referenceworkentry/10.1007/978-3-319-39312-4_197|accesso=20 marzo 2025|data=2018|editore=Springer International Publishing|lingua=en|pp=991–1003|ISBN=978-3-319-39312-4|doi=10.1007/978-3-319-39312-4_197}}</ref>
 
Riga 967 ⟶ 968:
 
== Normativa ==
 
* [https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX%3A32024R1290&qid=1742656674314 Regolamento delegato (UE) 2024/1290 della Commissione, del 29 febbraio 2024, che modifica il regolamento (UE) n. 528/2012 del Parlamento europeo e del Consiglio al fine di iscrivere l’azoto generato dall’aria ambiente come principio attivo nell’allegato I del regolamento]
* [https://eur-lex.europa.eu/legal-content/it/TXT/?uri=CELEX%3A32008R1272 Regolamento (CE) n. 1272/2008 del Parlamento europeo e del Consiglio, del 16 dicembre 2008 , relativo alla classificazione, all'etichettatura e all'imballaggio delle sostanze e delle miscele che modifica e abroga le direttive 67/548/CEE e 1999/45/CE e che reca modifica al regolamento (CE) n. 1907/2006]
Riga 979:
* {{cita libro | nome= Francesco | cognome= Borgese | titolo= Gli elementi della tavola periodica. Rinvenimento, proprietà, usi. Prontuario chimico, fisico, geologico | editore= CISU | città= Roma | anno= 1993 | isbn= 88-7975-077-1 | url= http://books.google.it/books?id=9uNyAAAACAAJ}}
* {{cita libro | autore= R. Barbucci, A. Sabatini, P. Dapporto | titolo= Tavola periodica e proprietà degli elementi | editore= Edizioni V. Morelli | città= Firenze | anno= 1998 | cid= Tavola periodica e proprietà degli elementi | url= http://www.idelsongnocchi.it/online/vmchk/chimica/tavola-periodica-degli-elementi-iupac.html | urlmorto= sì | urlarchivio= https://web.archive.org/web/20101022060832/http://www.idelsongnocchi.it/online/vmchk/chimica/tavola-periodica-degli-elementi-iupac.html }}
* F. A. Cotton G. Wilkinson, ''Chimica Inorganica'', Milano, Casa Editrice Ambrosiana, 3ª Edizione, 1984
* N. N. Greenwood A. Earnshaw, ''Chemistry of the Elements'', Butterworth Heinemann, 2ª Edizione, 1997.
* D. F. Shriver P. W. Atkins, ''Inorganic Chemistry'', Oxford University Press, 3ª Edizione, 1999
* L.Lamberto Malatesta, ''Compendio di Chimicachimica Inorganicainorganica'', Milano, Casa Editrice Ambrosiana, 4ª Edizione, 1999, ISBN 978-8840810072.
* L.Lamberto Berti, M.Mariano Calatozzolo R.e Rocco di Bartolo, ''L'industria dell'azoto'', Firenze, Casa Editrice G.D'Anna, 1994.
* A.Aaron J. Ihde, ''The Development of Modern Chemistry'', Garden City, Dover Publications, 2ª Edizione, 1984.
* C. E. Wayne R. P. Wayne, ''Photochemistry'', Oxford Chemistry Primers, 1999.
* [[P. W. Atkins]], ''Physical Chemistry'', [[Oxford University Press]], 6ª Edizione, 1998.
 
== Voci correlate ==