Tropical cyclone and User:Malo: Difference between pages

(Difference between pages)
Content deleted Content added
 
No edit summary
 
Line 1:
Ok, so I have been editing, and adding a lot of articles from public ___domain sources lately. Particularly [[List of ships of the United States Navy]]. I've been spending a lot of time just adding pages for all sorts of Navy ships. Why? because I'm bored. And suprisingly I am enjoying reading up on all the little historical details of these ships and how they came to be.
:''This article is about [[weather]] phenomena. For other uses, see [[Hurricane (disambiguation)]]'', ''[[Typhoon (disambiguation)]]'' and ''[[Tropical storm (disambiguation)]]''.
 
I'm still a huge fan of the [[Special:Random|Random article]] feature. Just because you never really know what you are going to find when you go there.
[[Image:Ivan iss.jpg|thumb|right|250px|[[Hurricane Ivan]] viewed from the [[International Space Station]], [[September 2004]]. [[NASA]] photo by [[Edward Fincke]].]]
[[Image:Typhoon in Hong Kong.jpg|thumb|250px|[[Storm|Heavy storm]] brought by [[2005_Pacific_typhoon_season#Typhoon_Sanvu_.28Huaning.29|Tropical Storm Sanvu]] in [[Hong Kong]]. Sanvu was the first typhoon in [[2005]] to pass through the city.]]
 
In [[meteorology]], a '''tropical cyclone''' (or '''tropical disturbance''', '''tropical depression''', '''tropical storm''', '''typhoon''', or '''hurricane''', depending on strength and ___location) is a type of [[low pressure area|low pressure system]] which generally forms in the [[tropics]]. While they can be highly destructive, tropical [[cyclone]]s are an important part of the [[atmospheric circulation]] system, which moves heat from the equatorial region toward the higher latitudes.
 
*Handy links - (shameless stolen from [[User:Jinian|Jinian]])
==Terms for tropical cyclones==
** [[Wikipedia:Naming conventions (ships)]]
[[Image:Typhoon.jpg|thumb|Eye of [[Typhoon Odessa]], Pacific Ocean, August [[1985]]]]
** [[Wikipedia:WikiProject Ships/Footers]]
** [[Wikipedia:WikiProject Ships/Tables]]
** [[:Category:Wikipedia cleanup]]
** [[:Category:U.S. Navy officers]]
** [[:Category:U.S. Navy admirals]]
** [[Wikipedia:Requested articles/Social Sciences and Philosophy]] for the military leaders. The Navy folks are easy if they have a ship named after them. DANFS has it.
 
The term used to describe tropical cyclones with maximum sustained winds exceeding 33 meters per second (63 knots, 73 mph, or 117 km/h) depends on the region:
*''hurricane'' in the North [[Atlantic Ocean]], North [[Pacific Ocean]] east of the [[International date line|dateline]], and ''unofficially'' in the South Atlantic Ocean
*''typhoon'' in the Northwest Pacific Ocean west of the dateline
*''severe tropical cyclone'' in the Southwest Pacific Ocean west of 160°E or Southeast Indian Ocean east of 90°E
*''severe cyclonic storm'' in the North Indian Ocean
*''tropical cyclone'' in the Southwest Indian Ocean and South Pacific Ocean east of 160°E.
 
These are really here more for my use than anything else. [[User:Malo|Malo]] 15:23, 13 September 2005 (UTC)
===Etymology===
*The word ''typhoon'' may come partly from the [[Portuguese language|Portuguese]] ''tufão''; [[Urdu language|Urdu]], [[Persian language|Persian]] and [[Arabic language|Arabic]] ''ţūfān'' (طوفان); [[Greek language|Greek]] ''[[Typhon|tuphōn]]'' (Τυφών); and the [[Chinese language|Chinese]] (Mandarin) phrase ''tái fēng'' (颱風), etymologically possibly derived from "big wind" (大風); and the Japanese word ''taifū'' (台風).
*The word ''hurricane'' is derived from the name of a native [[Caribbean]] [[Amerindian]] storm [[god]], [[Huracan]], via [[Spanish language|Spanish]] ''huracán''.
*The word ''cyclone'' came from the [[Greek language|Greek]] word "κύκλος", meaning "circle".
 
In other areas, hurricanes have been called ''Bagyo'' in the [[Philippines]] and ''Taino'' in [[Haiti]].
 
==Definition: a heat engine==
 
[[Image:Hurricane profile graphic.gif|frame|right|Hurricanes form when the energy released by the condensation of moisture in rising air causes a chain reaction. The air heats up, rising further, which leads to more condensation. The air flowing out of the top of this “chimney” drops towards the ground, forming powerful winds.]]
 
Structurally, a tropical cyclone is a large, rotating system of [[cloud]]s, [[wind]] and [[thunderstorm]] activity. The primary energy source of a tropical cyclone is the release of the [[heat of condensation]] from water vapor condensing at high altitudes. Because of this, a tropical cyclone can be thought of as a giant vertical [[heat engine]].
 
The ingredients for a tropical cyclone include a pre-existing weather disturbance, warm tropical oceans, moisture, and relatively light winds aloft. If the right conditions persist long enough, they can combine to produce the violent winds, incredible waves, torrential rains, and [[floods]] associated with this phenomenon.
 
[[Condensation]] as a driving force is the primary difference which distinguishes tropical cyclones from other meteorological phenomena. Mid-latitude cyclones, for example, draw their energy mostly from pre-existing temperature gradients in the atmosphere. In order to continue to drive its heat engine, a tropical cyclone must remain over warm water, which provides the atmospheric moisture needed. The evaporation of this moisture is driven by the high winds and reduced atmospheric pressure present in the storm, resulting in a sustaining cycle. As a result, when a tropical cyclone passes over land, its strength will diminish rapidly.
 
==Formation==
[[Image:Atlantic hurricane graphic.gif|frame|right|Waves in the trade winds in the Atlantic Ocean—areas of converging winds that move along the same track as the prevailing wind—create instabilities in the atmosphere that may lead to the formation of hurricanes.]]
 
The formation of tropical cyclones is still the topic of extensive research, and is still not fully understood. Five factors are necessary to make tropical cyclone formation possible:
 
# Sea surface temperatures above 26.5 degrees [[Celsius]] to at least a depth of 50 meters. Warm waters are the energy source for tropical cyclones. When these storms move over land or cooler areas of water they weaken rapidly.
# Upper level conditions must be conducive to [[thunderstorm]] formation. Temperatures in the atmosphere must decrease quickly with height, and the mid-[[troposphere]] must be relatively moist.
# A pre-existing weather disturbance. This is most frequently provided by [[tropical wave]]s—non-rotating areas of thunderstorms that move through the world's tropical oceans.
# A distance of approximately 10 degrees or more from the [[equator]], so that the [[Coriolis effect]] is strong enough to initiate the cyclone's rotation. (2004's [[Hurricane Ivan]], the strongest storm to be so close to the equator, started its formation at 9.7 degrees north.)
# Lack of vertical [[wind shear]] (change in wind velocity over height). High levels of wind shear can break apart the vertical structure of a tropical cyclone.
 
Tropical cyclones can occasionally form despite not meeting these conditions. A combination of a pre-existing disturbance, upper level divergence and a [[monsoon]]-related cold spell led to the creation of Typhoon Vamei at only 1.5 degrees north of the equator in 2001. It is estimated that the factors leading to the formation of this typhoon occur only once every 400 years. Additionally, only specific weather disturbances can result in tropical cyclones. These include:
 
# [[Tropical waves]], or easterly waves, which, as mentioned above, are westward moving areas of convergent winds. This convergence frequently assists in the development of thunderstorms, which can develop into tropical cyclones. The majority of tropical cyclones form from these. A similar phenomenon to tropical waves are West African disturbance lines, which are squally lines of convection that form over [[Africa]] and move into the Atlantic.
# Tropical upper tropospheric troughs, which are cold-core upper level lows. A warm-core tropical cyclone may result when one of these (on occasion) works down to the lower levels and produces deep [[convection]].
# Decaying frontal boundaries may occasionally stall over warm waters and produce lines of active convection. If a low level circulation forms under this convection, it may develop into a tropical cyclone.
 
===When do tropical cyclones form?===
{| class="toccolours" cellspacing=0 cellpadding=3 style="float:right; margin-left:1em; text-align:right;"
|+ '''Tropical storms and hurricanes by month, for the period 1944-2004<br>(North Atlantic region)'''
|- style="background:#ccccff"
!align=left| Month !! Total !! Average
|-
|align=left| January&ndash;April || 4 || 0.1
|-
|align=left| May || 8 || 0.1
|-
|align=left| June || 33 || 0.5
|-
|align=left| July || 53 || 0.9
|-
|align=left| August || 168 || 2.8
|-
|align=left| September || 219 || 3.6
|-
|align=left| October || 108 || 1.8
|-
|align=left| November || 30 || 0.5
|-
|align=left| December || 6 || 0.1
|-
|colspan=3 align=left| <small>'''Source:''' [http://www.aoml.noaa.gov/hrd/Landsea/deadly/Table8.htm NOAA]</small> + additions for 2001-04
|}
Worldwide, tropical cyclone activity peaks in late summer when water temperatures are warmest. However, each particular basin has its own seasonal patterns.
 
In the North Atlantic, a distinct hurricane season occurs from [[June 1]] to [[November 30]], sharply peaking from late [[August]] through [[September]]. The statistical peak of the North Atlantic hurricane season is [[September 10]]. The Northeast Pacific has a broader period of activity, but in a similar timeframe to the Atlantic. The Northwest Pacific sees tropical cyclones year-round, with a minimum in [[February]] and a peak in early [[September]]. In the North Indian basin, storms are most common from [[April]] to [[December]], with peaks in [[May]] and [[November]].
 
In the [[Southern Hemisphere]], tropical cyclone activity begins in late [[October]] and ends in [[May]]. Southern Hemisphere activity peaks in mid-[[February]] to early [[March]].
 
===Where do tropical cyclones form?===
 
Nearly all tropical cyclones form within 30 degrees of the [[equator]] and 87% form within 20 degrees of it. However, because the [[Coriolis effect]] initiates and maintains tropical cyclone rotation, such cyclones almost never form or move within about 10 degrees of the equator [http://www.bom.gov.au/bmrc/pubs/tcguide/ch1/figures_ch1/figure1.9.htm] (where the Coriolis effect is weakest). However, it is possible for tropical cyclones to form within this boundary if another source of initial rotation is provided. These conditions are extremely rare, and such storms are believed to form at a rate of less than one a century.
 
Most tropical cyclones form in a worldwide band of thunderstorm activity known as the [[Intertropical convergence zone]] (ITCZ).
 
Worldwide, an average of 80 tropical cyclones form each year.
 
====Major basins====
 
There are seven main basins of tropical cyclone formation:
 
*'''Western North Pacific Ocean:''' Tropical storm activity in this region frequently affects [[China]], [[Japan]], the [[Philippines]], and [[Taiwan]]. This is by far the most active basin, accounting for one third of all tropical cyclone activity in the world. National meteorology organizations, as well as the [[Joint Typhoon Warning Center]] (JTWC) are responsible for issuing forecasts and warnings in this basin.
*'''Eastern North Pacific Ocean:''' This is the second most active basin in the world, and is also the most dense (a large number of storms for a small area of ocean). Storms that form in this basin can affect western [[Mexico]], [[Hawaii]], northern [[Central America]], and on extremely rare occasions, [[California]]. In the [[United States]], the [[Central Pacific Hurricane Center]] is responsible for forecasting the western part of this area while the [[National Hurricane Center (NOAA)|National Hurricane Center]] is responsible for the eastern part.
*'''South Western Pacific Ocean:''' Tropical activity in this region largely affects [[Australia]] and [[Oceania]], and is forecast by [[Australia]] and [[Papua New Guinea]].
*'''Northern Indian Ocean:''' This basin is actually divided into two areas, the [[Bay of Bengal]] and the [[Arabian Sea]], with the Bay of Bengal dominating (5 to 6 times more activity). Hurricanes which form in this basin have historically cost the most lives &mdash; most notably, the [[1970 Bhola cyclone]] killed 200,000. Nations affected by this basin include [[India]], [[Bangladesh]], [[Sri Lanka]], [[Thailand]], [[Myanmar]], and [[Pakistan]], and all of these countries issue regional forecasts and warnings. Rarely, a tropical cyclone formed in this basin will affect the [[Arabian Peninsula]].
*'''Southeastern Indian Ocean:''' Tropical activity in this region affects [[Australia]] and [[Indonesia]], and is forecast by those nations.
*'''Southwestern Indian Ocean:''' This basin is the least understood, due to a lack of historical data. Cyclones forming here impact [[Madagascar]], [[Mozambique]], [[Mauritius]], and [[Kenya]], and these nations issue forecasts and warnings for the basin.
[[Image:Hurricane from satellite.jpg|thumb|[[Hurricane Anita]] approaching landfall on the coast of [[Mexico]] in September [[1977]].]]
*'''North Atlantic Basin:''' The most well studied of all tropical basins, the North Atlantic includes the [[Atlantic Ocean]], the [[Caribbean Sea]], and the [[Gulf of Mexico]]. Tropical cyclone formation here varies widely from year to year, ranging from over twenty to just one. The average is about ten. The [[United States]], [[Mexico]], [[Central America]], the [[Caribbean Islands]], [[Bermuda]], and [[Canada]] are affected by storms in this basin. The [[National Hurricane Center]] (NHC) based in [[Miami]], [[Florida]], issues forecasts for storms for all nations in the region; the [[Canadian Hurricane Centre]], based in [[Halifax, Nova Scotia|Halifax]], [[Nova Scotia]], also issues forecasts and warnings for storms expected to affect Canadian territory and waters. Hurricanes that strike [[Mexico]], [[Central America]], and [[Caribbean]] island nations, often do intense damage: they are deadlier when over warmer water, and the United States is better able to evacuate people from threatened areas than many other nations. This region causes the hurricanes that hit the coast of the [[United States]], especially [[Florida]], [[North Carolina]], the [[Gulf Coast of the United States|US Gulf Coast]] and occasionally [[New Jersey]], [[New York]] and [[New England]] (more often a hurricane has weakened to a tropical storm by the time it hits these more northerly regions). Many of the more intense Atlantic storms are [[Cape Verde-type hurricane]]s, forming off the west coast of [[Africa]] near the [[Cape Verde]] islands.
 
====Unusual formation areas====
The following areas spawn tropical cyclones only very rarely.
 
*'''Southern Atlantic Ocean:''' A combination of cooler waters, the lack of an ITCZ, and [[wind shear]] makes it very difficult for the Southern Atlantic to support tropical activity. However, three tropical cyclones have been observed here &mdash; a weak tropical storm in [[1991]] off the coast of [[Africa]], [[South_Atlantic_tropical_cyclone#Cyclone_Catarina|Hurricane Catarina]] (sometimes also referred to as Aldonça), which made landfall in [[Brazil]] in [[2004]] as a Category 1 hurricane, and a smaller storm in [[January 2004]], east of [[Salvador, Brazil]]. The January storm is thought to have reached tropical storm intensity based on scatterometre winds.
*'''Central North Pacific:''' Shear in this area of the [[Pacific Ocean]] severely limits tropical development. However, this region is commonly frequented by tropical cyclones that form in the much more favorable Eastern North Pacific Basin.
*'''[[Mediterranean Sea]]:''' Storms which appear similar to tropical cyclones in structure sometimes occur in the Mediterranean basin. Such cyclones formed in September [[1947]], September [[1969]], January [[1982]], September [[1983]], and January [[1995]]. However, there is debate on whether these storms were tropical in nature.
 
====Average Season====
*'''Australia: SW Pacific Basin''' includes the eastern part of Australia and the Fiji area.
*'''Australia: SE Indian Basin''' includes the eastern part of the Indian ocean and the northern and western part of the Australian basin.
 
{| border="1" cellspacing="0" cellpadding="3"
! Basin !! Season Start !! Season End !! Tropical Storms !! Tropical Cyclones !! Category 3+ Tropical Cyclones
|-
| Northwest Pacific || Year Round || Year Round || 26.7 || 16.9 || 8.5
|-
| Northeast Pacific || May || November || 16.3 || 9.0 || 4.1
|-
| Southwest Indian || October || May || 13.3 || 6.7 || 2.7
|-
| North Atlantic || June || November || 10.6 || 5.9 || 2.0
|-
| Australia Southwest Pacific || October || May || 10.6 || 4.8 || 1.9
|-
| Australia Southeast Indian || October || May || 7.3 || 3.6 || 1.6
|-
| North Indian || April || December || 5.4 || 2.2 || 0.4
|}
 
==Structure and classification==
[[Image:Hurricane structure graphic.jpg|frame|right|Structure of a hurricane]]
A strong tropical cyclone consists of the following components.
 
* '''Surface low:''' All tropical cyclones rotate around an area of low [[atmospheric pressure]] near the [[Earth]]'s surface. The pressures recorded at the centers of tropical cyclones are among the lowest that occur on Earth's surface at [[sea level]].
* '''Warm core:''' Tropical cyclones are characterized and driven by the release of large amounts of latent heat of condensation as moist air is carried upwards and its water vapor condenses. This heat is distributed vertically, around the center of the storm. Thus, at any given altitude (except close to the surface where water temperature dictates air temperature) the environment inside the cyclone is warmer than its outer surroundings.
* '''Central Dense Overcast (CDO):''' The Central Dense Overcast is a dense shield of rain bands and [[thunderstorm]] activity surrounding the central low. Tropical cyclones with symmetrical CDO tend to be strong and well developed.
* '''Eye:''' A strong tropical cyclone will harbor an area of sinking air at the center of circulation. Weather in the eye is normally calm and free of clouds (however, the sea may be extremely violent). Eyes are home to the coldest temperatures of the storm at the surface, and the warmest temperatures at the upper levels. The eye is normally circular in shape, and may range in size from 8 km to 200 km (5 miles to 125 miles) in diameter. In weaker cyclones, the CDO covers the circulation center, resulting in no visible eye.
* '''Eyewall:''' The eyewall is a circular band of intense convection and winds immediately surrounding the eye. It has the most severe conditions in a tropical cyclone. Intense cyclones show [[eyewall replacement cycle]]s, in which outer eye walls form to replace inner ones. The mechanisms that make this occur are still not fully understood.
* '''Outflow:''' The upper levels of a tropical cyclone feature winds headed away from the center of the storm with an [[anticyclonic]] rotation. [[Winds]] at the surface are strongly cyclonic, weaken with height, and eventually reverse themselves. Tropical cyclones owe this unique characteristic to the warm core at the center of the storm.
 
===Types of tropical cyclones===
Tropical cyclones are classified into three main groups: tropical depressions, tropical storms, and a third group whose name depends on the region.
 
A ''tropical depression'' is an organized system of clouds and thunderstorms with a defined surface circulation and maximum sustained winds of less than 17 [[metre]]s per second (33 [[knot (nautical)|knots]], 38 mph, or 62 km/h). It has no eye, and does not typically have the spiral shape of more powerful storms. It is already becoming a low-pressure system, however, hence the name "depression".
 
A ''tropical storm'' is an organized system of strong thunderstorms with a defined surface circulation and maximum sustained winds between 17 and 33 meters per second (34&ndash;63 knots, 39&ndash;73 mph, or 62&ndash;117 km/h). At this point, the distinctive cyclonic shape starts to develop, though an eye is usually not present. Government weather services assign first names to systems that reach this intensity (thus the term ''named storm'').
 
At hurricane intensity, a tropical cyclone tends to develop an ''eye'', an area of relative calm (and lowest atmospheric pressure) at the center of the circulation. The eye is often visible in satellite images as a small, circular, cloud-free spot. Surrounding the eye is the [[eyewall]], an area about 10 to 50 miles (16 to 80 kilometers) wide in which the strongest thunderstorms and winds circulate around the storm's center.
 
The circulation of clouds around a cyclone's center imparts a distinct spiral shape to the system. Bands or arms may extend over great distances as clouds are drawn toward the cyclone. The direction of the cyclonic circulation depends on the hemisphere; it is counterclockwise in the [[Northern Hemisphere]], clockwise in the [[Southern Hemisphere]]. Maximum sustained winds in the strongest tropical cyclones have been measured at more than 85 m/s (165 knots, 190 mph, 305 km/h). Intense, mature hurricanes can sometimes exhibit an inward curving of the eyewall top that resembles a football stadium: this amazing phenomenon is thus sometimes referred to as [[stadium effect]].
 
While the most obvious motion of clouds is toward the center, tropical cyclones also develop an outward flow of clouds. These originate from air that has released its moisture and is expelled at high altitude through a chimney effect of the storm engine. This outflow produces high, thin cirrus clouds that spiral away from the center. The high cirrus clouds may be the first signs of an approaching hurricane.
 
===Categories and ranking===
Hurricanes are ranked according to their maximum winds using the [[Saffir-Simpson Hurricane Scale]]. A ''Category 1'' storm has the lowest maximum winds, a ''Category 5'' hurricane has the highest. The rankings are not absolute in terms of effects. Lower-category storms can inflict greater damage than higher-category storms, depending on factors such as local terrain and total rainfall. In fact, tropical systems of less than hurricane strength can produce significant damage and human casualties, especially from flooding and landslides.
 
The [[National Hurricane Center]] classifies hurricanes of Category 3 and above as ''Major Hurricanes''. The [[Joint Typhoon Warning Center]] classifies typhoons with wind speeds of at least 150 mi/h (67 m/s or 241 km/h, equivalent to a strong Category 4 storm) as ''Super Typhoons''.
 
The definition of sustained winds recommended by the [[World Meteorological Organization]] (WMO) and used by most weather agencies is that of a 10-minute average. The U.S. weather service defines sustained winds based on 1-minute average speed measured about 10 meters (33 ft) above the surface.
 
===Other storm systems===
An ''[[extratropical]] cyclone'' is a storm that derives energy from horizontal temperature differences, which are typical in higher latitudes. A tropical cyclone can become extratropical as it moves toward higher latitudes if its energy source changes from heat released by condensation to differences in temperature between air masses. From space, extratropical storms have a characteristic "[[comma]]-shaped" cloud pattern. Extratropical cyclones can also be dangerous because their low-pressure centers cause powerful winds.
 
In the [[United Kingdom]] and [[Europe]], some severe northeast Atlantic cyclonic depressions are referred to as "hurricanes," even though they rarely originate in the tropics. These [[European windstorm]]s can generate hurricane-force windspeeds but are not given individual names. However, two powerful extratropical cyclones that ravaged [[France]], [[Germany]], and the [[United Kingdom]] in [[December 1999]], "Lothar" and "Martin", were named due to their unexpected power (equivalent to a category 1 or 2 hurricane). In British [[Shipping Forecast]]s, winds of force 12 on the [[Beaufort scale]] are described as "hurricane force."
 
There is also a polar counterpart to the tropical cyclone, called a [[polar low]].
 
==Movement and track==
===Large-scale winds===
Although tropical cyclones are large systems generating enormous energy, their movements over the earth's surface are often compared to that of leaves carried along by a stream. That is, large-scale winds&mdash;the streams in the earth's atmosphere&mdash;are responsible for moving and steering tropical cyclones. The path of motion is referred to as a tropical cyclone's ''track.''
The major force affecting the track of tropical systems in all areas are winds circulating around high-pressure areas. Over the North Atlantic Ocean, tropical systems are steered generally westward by the east-to-west winds on the south side of the Bermuda High, a persistent high-pressure area over the North Atlantic. Also, in the area of the North Atlantic where hurricanes form, [[trade winds]], which are prevailing westward-moving wind currents, steer ''tropical waves'' (precursors to tropical depressions and cyclones) westward from off the African coast toward the Caribbean and North America.
 
===Coriolis effect===
The earth's rotation also imparts a force (termed the ''Coriolis Force'' or ''[[Coriolis Effect]]''). This force causes cyclonic systems to move toward the earth's poles in the absence of strong steering currents. Thus, tropical cyclones in the Northern Hemisphere are deflected toward the north pole and cyclones in the Southern Hemisphere are deflected toward the South Pole, if no strong pressure systems are counteracting the Coriolis Force.
 
===Interaction with high and low pressure systems===
Finally, when a tropical cyclone moves into higher latitude, its general track around a high-pressure area can be deflected significantly by winds moving toward a low-pressure area. Such a track direction change is termed ''recurve.'' A hurricane moving from the Atlantic toward the [[Gulf of Mexico]], for example, will recurve to the north and then northeast if it encounters winds blowing northeastward toward a low-pressure system passing over North America. Many tropical cyclones along the U.S. East Coast and in the Gulf of Mexico are eventually forced toward the northeast by low-pressure areas which move from west to east over North America.a
 
===Track forecasting===
Because of the forces that affect tropical cyclone tracks, accurate track predictions depend on determining the position and strength of high- and low-pressure areas, and predicting how those areas will change during the life of a tropical system.
 
With their understanding of the forces that act on tropical cyclones, and a wealth of data from earth-orbiting satellites and other sensors, scientists have increased the accuracy of track forecasts over recent decades. High-speed computers and sophisticated simlulation software allow forecasters to produce ''computer models'' that forecast tropical cyclone tracks based on the future position and strength of high- and low-pressure systems. But while track forecasts have become more accurate than 20 years ago, scientists say they are less skillful at predicting the intensity of tropical cyclones. They attribute the lack of improvement in intensity forecasting to the complexity of tropical systems and an incomplete understanding of factors that affect their development.
 
==Dissipation==
A tropical cyclone can cease to have tropical characteristics in several ways:
 
*It moves over land, thus depriving it of the warm water it needs to power itself, and quickly loses strength. Most strong storms become disorganized areas of low pressure within a day or two of landfall. There is, however, a chance they could regenerate if they manage to get back over open warm water. If a storm is over mountains for even a short time, it can rapidly lose strength. This is, however, the cause of many storm fatalities, as the dying storm unleashes torrential rainfall, and in mountainous areas, this can lead to deadly [[mudslide]]s.
*It remains in the same area of ocean for too long, consuming all the heat available and dissipating.
*It experiences [[wind shear]], causing the convection to lose direction and the heat engine breaks down.
*It can be weak enough to be consumed by another area of low pressure, disrupting it and joining to become a large area of non-cyclonic thunderstorms.
*It enters colder waters. This does not necessarily mean the death of the storm, but the storm will lose its tropical characteristics. These storms are [[extratropical cyclones]].
 
Even after a tropical cyclone is said to be extratropical or dissipated, it can still have [[gale]]-force (or even hurricane-force) winds and drop several inches of rainfall. When a tropical cyclone reaches higher latitudes or passes over land, it may merge with [[weather front]]s or develop into a [[low pressure area|frontal cyclone]], also called [[extratropical cyclone]]. In the [[Atlantic ocean]], such tropical-derived cyclones of higher latitudes can be violent and may occasionally remain at hurricane-force wind speeds when they reach Europe as a [[European windstorm]].
 
===Artificial dissipation===
In the [[1960s]] and [[1970s]], the United States government attempted to weaken hurricanes in its [[Project Stormfury]] by [[cloud seeding|seeding]] selected storms with [[silver iodide]]. It was thought that the seeding would disrupt the storm's eyewall, causing it to collapse and thus reduce the winds. However, it was later discovered that eyewall disruption happens naturally as part of eyewall replacement cycles, and so the success of the program was impossible to gauge.
 
Other approaches have been suggested over time, including cooling the water under a tropical cyclone by towing [[iceberg]]s into the tropical oceans; covering the ocean in a substance that inhibits evaporation; or blasting the cyclone apart with nuclear weapons. These approaches all suffer from the same flaw: tropical cyclones are simply too large for any of them to be practical [http://www.aoml.noaa.gov/hrd/tcfaq/C5f.html].
 
==Monitoring, observation and tracking==
Intense tropical cyclones pose a particular observation challenge. As they are a dangerous oceanic phenomenon, [[weather station]]s are rarely available on the site of the storm itself. Surface level observations are generally available only if the storm is passing over an island or a coastal area, or it has overtaken an unfortunate ship. Even in these cases, real-time measurement taking is generally possible only in the periphery of the cyclone, where conditions are less catastrophic.
 
It is however possible to take in-situ measurements, in real-time, by sending specially equipped reconnaissance flights into the cyclone. In the Atlantic basin, these flights are regularly flown by US government [[Hurricane Hunters]]. The aircraft used are [[WC-130]] Hercules and [[WP-3D]] Orions, both four-engine [[turboprop]] cargo aircraft. These aircraft fly directly into the storm and take direct and remote-sensing measurements. The aircraft also launch [[dropsonde]]s inside the cyclone, giving a continuous set of measurements from flight level to the ocean surface.
 
Tropical cyclones far from land are tracked by [[weather satellite]]s using [[visible light]] and [[infrared]] bands. Nearer to land, the cyclone can also be imaged remotely by [[radar]].
 
===Naming of tropical cyclones===
Storms reaching tropical storm strength (winds exceeding 17 metres per second, 38 mph, or 62 km/h) are given names, to assist in recording insurance claims, to assist in warning people of the coming storm, and to further indicate that these are important storms that should not be ignored. These names are taken from lists which vary from region to region and are drafted a few years ahead of time. The lists are decided upon, depending on the regions, either by committees of the World Meteorological Organization (called primarily to discuss many other issues), or by national weather services involved in the forecasting of the storms.
 
Each year, the names of particularly destructive storms are "retired" and new names are chosen to take their place.
 
''See also: '''[[Lists of tropical cyclone names]]'''''
 
====History of tropical cyclone naming====
For several hundred years after the arrival of Europeans in the West Indies, hurricanes there were named after the [[saint's day]] on which the storm struck.
 
The modern method of ascribing people's names to storms was introduced by [[Clement Wragge]], an Anglo-Australian [[meteorologist]] at the end of the 19th century. As well as feminine names, he also used the names of politicians who had offended him.
 
During [[World War II]], tropical cyclones were given feminine names, mainly for the convenience of the forecasters and in a somewhat ad hoc manner. For a few years afterwards, names from the [[Joint Army/Navy Phonetic Alphabet]] were used.
 
The modern naming convention came about in response to the need for unambiguous radio communications with ships and aircraft. As transportation traffic increased and meteorological observations improved in number and quality, several typhoons, hurricanes or cyclones might have to be tracked at any given time. To help in their identification, beginning in 1953 the practice of systematically naming tropical storms and hurricanes was initiated by the United States [[NOAA National Hurricane Center|National Hurricane Center]], and is now maintained by the [[WMO]].
 
In keeping with the common English language practice of referring to inanimate objects such as boats, trains, etc., using the female pronoun "she," names used were exclusively feminine. The first storm of the year was assigned a name beginning with the letter "A", the second with the letter "B", etc. However, since tropical storms and hurricanes are primarily destructive, some considered this practice [[sexism|sexist]]. The [[National Weather Service]] responded to these concerns in 1979 with the introduction of masculine names to the nomenclature. This was also the first year that a list of names was prepared before the season began.
 
====The naming process====
The WMO's Regional Association IV Hurricane Committee selects the names for Atlantic Basin and central and eastern Pacific storms.
 
Currently, in the Atlantic and Eastern North Pacific regions, feminine and masculine names during a given season are assigned alternately, still in alphabetic order. The "gender" of the first storm of the season also alternates year to year. Six lists of names are prepared in advance, and reused on a six-year cycle (a different list is used for each year). Names of storms may be retired at the request of affected countries if they have caused extensive damage to life and property. See [[List of notable tropical cyclones]] for lists of retired names.
 
In the Central North Pacific region, the name lists are maintained by the Central Pacific Hurricane Center in [[Honolulu, Hawaii]]. Four lists of [[Hawaiian language|Hawaiian]] names are selected and used in sequential order without regard to year.
 
In the Western North Pacific, name lists are maintained by the [[WMO Typhoon Committee]]. Five lists of names are used, with each of the 14 nations on the Typhoon Committee submitting two names to each list. Names are used in the order of the countries' English names, sequentially without regard to year. [[Japan Meteorological Agency]] uses a secondary naming system in Western North Pacific that numbers a typhoon on the order it formed, resetting on December 31 of every year. The Typhoon ''Songda'' in September 2004 is internally called the typhoon number 18 and is recorded as the typhoon 0418 with ''04'' taken from the year.
 
The Australian [[Bureau of Meteorology]] maintains three lists of names, one for each of the Western, Northern and Eastern Australian regions. There are also [[Fiji]] region and [[Papua New Guinea]] region names<!-- (''maintained by who?'')-->. The [[Seychelles]] Meteorological Service maintains a list for the Southwest Indian Ocean.
 
==Effects==
[[Image:Destruction following hurricane andrew.jpg|thumb|350px|right|The aftermath of [[Hurricane Andrew]], the second costliest tropical cyclone (after [[Hurricane Katrina]]) in [[United States]] history.]]
A mature tropical cyclone can release heat at a rate upwards of 6x10<sup>14</sup> watts [http://www.noaa.gov/questions/question_082900.html]. Tropical cyclones on the open sea cause large waves, heavy rain, and high winds, disrupting international shipping and sometimes sinking ships. However, the most devastating effects of a tropical cyclone occur when they cross coastlines, making landfall. A tropical cyclone moving over land can do direct damage in four ways.
 
* High [[wind]]s - Hurricane strength winds can damage or destroy vehicles, buildings, bridges, etc. High winds also turn loose debris into flying projectiles, making the outdoor environment even more dangerous.
* [[Storm surge]] - Tropical cyclones cause an increase in sea level, which can flood coastal communities. This is the worst effect, as cyclones claim 80% of their victims when they first strike shore.
* Heavy [[rain]] - The [[thunderstorm]] activity in a tropical cyclone causes intense rainfall. Rivers and streams flood, roads become impassable, and landslides can occur.
* [[Tornado]] activity - The broad rotation of a hurricane often spawns tornadoes. While these tornadoes are normally not as strong as their non-tropical counterparts, they can still cause tremendous damage.
 
[[Image:Storm surge graphic.gif|frame|right|Graphic illustrating storm surge]]
 
Often, the secondary effects of a tropical cyclone are equally damaging. They include:
 
* Disease - The wet environment in the aftermath of a tropical cyclone, combined with the destruction of sanitation facilities and a warm tropical climate, can induce epidemics of disease which claim lives long after the storm passes. One of the most common post-hurricane injuries is stepping on a [[nail]] in storm debris, leading to a risk of [[tetanus]] or other infection. Infections of cuts and bruises can be greatly amplified by wading in sewage-[[polluted]] water.
* Power outages - Tropical cyclones often knock out power to tens of thousands of people, prohibiting vital communication and hampering rescue efforts.
* Transportation difficulties - Tropical cyclones often destroy key bridges, overpasses, and roads, complicating efforts to transport food, clean water, and medicine to the areas that need it.
 
===Beneficial effects of tropical cyclones===
The price in lives and personal property of cyclones cannot be overlooked. However, cyclones may bring much-needed precipitation to otherwise dry regions. [[Hurricane Camille]] averted drought conditions and ended [[water deficit]]s along much of its path. [[Hurricane Floyd]] did the same thing in New Jersey in 1999. Additionally, the destruction caused by Camille on the Gulf coast spurred redevelopment, multiplying many times the land values that existed before the storm. However, disaster officials point out that this is not necessarily a good thing; it just encourages more people to live in what is clearly a danger area for deadly storms (as was shown by the effects of Katrina).
 
Additionally, hurricanes help to maintain global heat balance by moving warm, moist tropical air to the mid-latitudes and polar regions.
 
== Long term trends in cyclone activity ==
A common question has been to ask whether [[global warming]] can or will cause more frequent or more fierce tropical cyclones. So far, virtually all [[climatologist]]s seem to agree that a single storm, or even a single season, cannot clearly be attributed to a single cause such as global warming or natural variation [http://www.realclimate.org/index.php?p=181]. The question is thus whether a [[statistic]]al [[trend]] in frequency or strength of cyclones exists. The [[United States|U.S.]] [[National Oceanic and Atmospheric Administration]] says in their Hurricane FAQ that "it is highly unlikely that global warming has (or will) contribute to a drastic change in the number or intensity of hurricanes." [http://www.aoml.noaa.gov/hrd/tcfaq/G4.html].
 
Regarding frequency, while the number of storms in the Atlantic has increased since 1995, there seems to be no signs of a global trend; the global number of tropical cyclones remains about 90&nbsp;&plusmn;&nbsp;10. [http://wind.mit.edu/~emanuel/anthro2.htm].
 
Regarding strength, a similar conclusion was consensus until recently. This consensus is now questioned by [[Kerry Emanuel|K. Emanuel]] (2005) ([http://www.nature.com/nature/journal/v436/n7051/full/nature03906.html ''Nature'' '''436''', 686&ndash;688], [ftp://texmex.mit.edu/pub/emanuel/PAPERS/NATURE03906.pdf preprint]). In this article, K. Emanuel states that the potential hurricane destructiveness, a measure which combines strength, duration, and frequency of hurricanes, "is highly correlated with tropical sea surface temperature, reflecting well-documented climate signals, including multidecadal oscillations in the North Atlantic and North Pacific, and global warming." K. Emanuel further predicts "a substantial increase in hurricane-related losses in the twenty-first century".
 
The question then becomes, what caused this increase in sea surface temperatures? It could be due to the [[Atlantic Multidecadal Oscillation]] (AMO), a 50&ndash;70 year pattern of temperature variability. K. Emanuel, however, found the recent temperature increase was outside the range of previous oscillations. So, both a natural variation (such as the AMO) and global warming could have made contributions to the warming of the tropical Atlantic over the past decades, but an exact attribution is so far impossible to make. [http://www.realclimate.org/index.php?p=181]
 
The number and strength of Atlantic hurricanes undergoes a similar 50-70-year cycle. Although more common since 1995, few above-normal hurricane seasons occurred 1970-1994. Destructive hurricanes struck frequently from 1926-60, including many major New England hurricanes. A record 21 Atlantic tropical storms formed in 1933. Tropical hurricanes occurred infrequently between 1900-25; however, many intense storms formed 1870-1899. During the 1887 season, 19 tropical storms formed, of which a record 4 occurred after 1 November and 11 strengthened into hurricanes. Few hurricanes occurred in the 1840s to 1860s; however, many struck in the early 1800s.
 
These unusually active hurricane seasons predated satellite coverage of the Atlantic basin that now enables forecasters to see all tropical cyclones. Before the satellite era began in 1961, tropical storms or hurricanes went undetected unless a ship reported a voyage through the storm. The official record, therefore, probably misses many storms in which no ship experienced gale-force winds, recognized it as a tropical storm (as opposed to a high-latitude extra-tropical cyclone, a tropical wave, or a brief squall), returned to port, and reported the experience. Intense hurricanes probably sunk almost every ship unfortunate enough to encounter the highest winds and seas or destroyed the measurement instruments. The logs of many ships, moreover, have been lost, destroyed, or rendered illegible over time, and many may contain inaccurate information for various reasons.
 
Often in part because of the threat of hurricanes, many coastal regions had sparse population between major ports until the advent of automobile tourism; therefore, the most severe portions of hurricanes striking the coast often went unmeasured. The combined effects of ship destruction and remote landfall severely limits the number of intense hurricanes in the official record before the era of hurricane reconnaissance aircraft and satellite meteorology. Although the record shows a distinct increase in the number and strength of intense hurricanes, therefore, experts regard this increase as illusory rather than realistic.
 
Atlantic storms are becoming more destructive financially - this is not in dispute, since five of the ten most expensive storms in [[United States]] history have occurred since [[1990]]. This can to a large extent be attributed to the number of people living in susceptible coastal area, and massive development in the region since the last upshot in Atlantic hurricane activity in the [[1960s]].
 
==Notable cyclones==
''Main article: '''[[List of notable tropical cyclones]]'''''
 
Tropical cyclones that cause massive destruction are fortunately rare, but when they happen, they can cause damage in the thousands of lives and the billions of [[United States dollar|dollars]].
 
The deadliest tropical cyclone on record is a 100 mph (160 km/h, Category 2) storm that hit the densely populated [[Ganges Delta]] region of [[East Pakistan]] (now [[Bangladesh]]) on [[November 13]], [[1970]]. It killed anywhere from 200,000 to 500,000 people. The Indian Ocean basin has historically been the deadliest, with three storms since [[1900]] killing over 100,000 people, each in Bangladesh. [http://encarta.msn.com/media_701500587_761565992_-1_1/Major_Hurricanes_Typhoons_Cyclones_and_other_Storms_since_1900.html]
 
In the Atlantic basin, three storms have killed more than 10,000 people. [[Hurricane Mitch]] during the [[1998 Atlantic hurricane season]] caused severe flooding and mudslides in [[Honduras]], killing about 18,000 people and changing the landscape enough that entirely new maps of the nation were needed. The [[Galveston Hurricane of 1900]], which made landfall at [[Galveston, Texas]] as an estimated Category 4 storm, killed 6,000 to 12,000 people, and remains the deadliest natural disaster in the history of the [[United States]]. The deadliest Atlantic storm on record was the [[Great Hurricane of 1780]], which killed between 20,000 and 30,000 people in the [[Antilles]].
 
The most costly storm was [[1992]]'s [[Hurricane Andrew]], which caused an estimated $25 billion in damage in [[Florida]] and the [[U.S. Gulf Coast]], and was the most destructive natural disaster in [[United States history]] until [[Hurricane Katrina]] in 2005.
 
[[Image:Typhoonsizes.jpg|right|frame|The relative sizes of Typhoon Tip, Tropical Cyclone Tracy, and the United States.]]
The most intense storm on record was [[Typhoon Tip]] in the northwestern Pacific Ocean in [[1979]], which had a minimum pressure of only 870 [[millibar|mb]] and maximum sustained windspeeds of 190 mph (305 km/h). It weakened before striking [[Japan]]. Tip does not hold alone the record for fastest sustained winds in a cyclone; [[Typhoon Keith]] in the Pacific, and [[Hurricane Camille]] and [[Hurricane Allen]] in the North Atlantic currently share this record as well [http://www.weatherwatchers.org/tropical/1998/13/mitch.html], although recorded windspeeds that fast are suspect, since most monitoring equipment is likely to be destroyed by such conditions.
 
Camille was the only storm to actually strike land while at that intensity, making it, with 190 mph (305 km/h) sustained winds and 210 mph (335 km/h) gusts, the strongest tropical cyclone of record to ever hit land. For comparison, these speeds are encountered at the center of a strong [[tornado]], but Camille was much larger and long-lived than any tornado.
 
Typhoon Nancy in [[1961]] had recorded windspeeds of 213 mph (343 km/h), but recent research indicates that windspeeds from the 1940s to the 1960s were gauged too high, and this is no longer considered the fastest storm on record. [http://www.aoml.noaa.gov/hrd/tcfaq/E1.html] Similarly, a gust caused by [[Super Typhoon Paka]] over [[Guam]] was recorded at 236 mph (380 km/h); however, this reading had to be discarded, since the [[anemometer]] was damaged by the storm. Had it been confirmed, this would be the strongest non-[[tornado | tornadic]] wind ever recorded at the [[Earth]]'s surface. (The current record is held by a non-hurricane wind registering 231 mph (372 km/h) at [[Mount Washington (New Hampshire)|Mount Washington]] in [[New Hampshire]].) [http://www.guam.navy.mil/weather/metoc/INDEX.htm]
 
Tip was also the largest cyclone on record, with a circulation 1,350 miles (2,170 km) wide. The average tropical cyclone is only 300 miles (480 km) wide. The smallest storm on record, [[1974]]'s [[Cyclone Tracy]], which devastated [[Darwin, Northern Territory|Darwin]], [[Australia]], was roughly 30 miles (50 km) wide. [http://hurricanes.noaa.gov/prepare/structure.htm]
 
[[Hurricane Iniki]] in [[1992]] was the most powerful storm to strike [[Hawaii]] in recorded history, hitting [[Kauai]] as a Category 4 hurricane, killing six and causing $3 billion in damage.
 
[[Image:Brazil hurricane.jpg|thumbnail|The first recorded South Atlantic hurricane]]
On [[March 26]], [[2004]], Cyclone Catarina became the first recorded [[South Atlantic tropical cyclone|South Atlantic hurricane]]. Previous South Atlantic cyclones in [[1991]] and [[2004]] reached only tropical storm strength. Hurricanes may have formed there prior to [[1960]] but were not observed until [[weather satellite]]s began monitoring the Earth's oceans in that year.
 
A tropical cyclone need not be particularly strong to cause memorable damage; [[Tropical Storm Allison]] in [[2001]] had its name retired for killing 41 people and causing over $5 billion damage in [[Texas]], even though it never became a hurricane. [[Hurricane Jeanne]] in [[2004]] was only a tropical storm when it made a glancing blow on [[Haiti]], but the flooding and mudslides it caused killed over 3,000 people.
 
On August 28, 2005, [[Hurricane Katrina]] made landfall to [[Louisiana|Louisiana, United States]] and nearby states. The US National Hurricane Center, in its August review of the tropical storm season stated that Katrina was probably the [[worst natural disaster in US history]]. Its death toll is believed to run into the thousands, mainly from flooding and the aftermath.
 
==See also==
* [[Neutercane]]
* [[Polar low]]
* [[Subtropical cyclone]]
* [[List of Atlantic hurricane seasons]]
* [[List of Pacific hurricane seasons]]
* [[List of Pacific typhoon seasons]]
 
==External links==
 
=== Regional Specialised Meteorological Centers ===
*[http://www.nhc.noaa.gov/ US National Hurricane Center] - North Atlantic, Eastern Pacific
*[http://www.prh.noaa.gov/hnl/cphc/ Central Pacific Hurricane Center] - Central Pacific
*[http://www.jma.go.jp/en/typh/ Japan Meteorological Agency] - Western Pacific
*[http://www.imd.gov.in/ India Meteorological Department] - [[Bay of Bengal]] and the [[Arabian Sea]]
*[http://www.meteo.fr/temps/domtom/La_Reunion/ Météo-France - La Reunion] - South Indian Ocean from Africa to 90&deg; E
*[http://www.met.gov.fj/advisories.html Fiji Meteorological Service] - South Pacific east of 160&deg;, north of 25&deg; S
 
=== Other tropical cyclone warning centers ===
*[http://www.npmoc.navy.mil/jtwc.html Joint Typhoon warning Center] - Western Pacific
*[http://www.metservice.co.nz/ MetService, New Zealand] - Tasman Sea, South Pacific south of 25&deg S
*[http://www.bom.gov.au/weather/ Australian Bureau of Meteorology] - southern hemisphere from 90&deg; E to 160&deg; E
*[http://www.hurricanes.ca Canadian Hurricane Centre] - northwest Atlantic (overlaps US NHC)
 
=== Past storms ===
*[http://www.solar.ifa.hawaii.edu/Tropical/summary.html Yearly World Tropical Storm Summary] - About 10 years of origins and tracks, in color, up to present. Broken up by year and region; for example "Atlantic, 2005"
*[http://weather.unisys.com/hurricane/ Unisys historical and contemporary hurricane track data] e.g. [http://weather.unisys.com/hurricane/atlantic/1968/index.html Atlantic 1968]
*[http://www.super70s.com/Super70s/Tech/Nature/Disasters/Hurricanes/ Hurricanes of the 1970s, including survivor stories] and [http://www.awesome80s.com/Awesome80s/Tech/Nature/Disasters/Hurricanes/ 1980s]
*[http://www.bom.gov.au/bmrc/pubs/tcguide/ch1/figures_ch1/figure1.9.htm Worldwide tropical cyclone tracks, 1979-1988]
 
=== Miscellaneous ===
*[http://www.irbs.com/bowditch/pdf/chapt36.pdf Tropical Cyclones] - Chapter from the online edition of [[Nathaniel Bowditch]]'s ''American Practical Navigator''
*[http://www.hurricanealley.net Hurricane Alley - tracking]
*[http://www.hurricanetalk.com Live Hurricane Talk and Information Archive]
*[http://www.aoml.noaa.gov/hrd/tcfaq/tcfaqHED.html NOAA's Tropical Cyclone FAQ]
*[http://www.bom.gov.au/bmrc/pubs/tcguide/ch1/ch1_3.htm Global climatology of tropical cyclones]
*[http://www.stormcarib.com Caribbean Hurricane Network]
*[http://www.mindspring.com/~jbeven/intr0008.htm 1995 Mediterranean "Hurricane"]
*[http://html.wesh.com/sh/idi/weather/hurricanes/hurricanetracker.html Atlantic hurricanes track animations]
*[http://www.bom.gov.au/bmrc/pubs/tcguide/ch1/ch1_3.htm WMO guide on cyclone terminology]
*[http://www.metoffice.com/weather/tropicalcyclone/images.html Tropical cyclone pictures and movies, from the United Kingdom Met Office]
*[http://www.nasa.gov/hurricane NASA Hurricane Web Page] - Data, research, science & multimedia resources from NASA
*[http://www.pbs.org/wgbh/nova/teachers/viewing/3204_02_nsn.html NOVA scienceNOW: Hurricanes]
 
[[Category:Weather hazards]]
[[Category:Weather]]
[[Category:Tropical cyclones|*]]
 
[[ca:Huracà]]
[[cs:Tropická cyklóna]]
[[cy:Teiff&#373;n]]
[[da:Orkan]]
[[de:Tropischer Wirbelsturm]]
[[eo:Uragano]]
[[es:Huracán]]
[[fr:Cyclone tropical]]
[[he:&#1505;&#1493;&#1508;&#1492; &#1496;&#1512;&#1493;&#1508;&#1497;&#1514;]]
[[id:Siklon tropis]]
[[ja:&#21488;&#39080;]]
[[ko:&#50676;&#45824;&#51200;&#44592;&#50517;]]
[[lv:Viesu&#316;v&#275;tra]]
[[mk:&#1058;&#1088;&#1086;&#1087;&#1089;&#1082;&#1080; &#1094;&#1080;&#1082;&#1083;&#1086;&#1085;]]
[[nl:Orkaan]]
[[pl:Cyklon tropikalny]]
[[pt:Furacão]]
[[ru:&#1058;&#1088;&#1086;&#1087;&#1080;&#1095;&#1077;&#1089;&#1082;&#1080;&#1081; &#1094;&#1080;&#1082;&#1083;&#1086;&#1085;]]
[[sl:Tropski ciklon]]
[[fi:Trooppinen hirmumyrsky]]
[[sv:Tropisk cyklon]]
[[zh:&#29105;&#24118;&#27683;&#26059;]]
[[zh-min-nan:Hong-thai]]