Content deleted Content added
m raised ref |
Tom.Reding (talk | contribs) m →References: Ref cleanup (translator/link), WP:GenFixes on, using AWB |
||
(15 intermediate revisions by 5 users not shown) | |||
Line 1:
In [[mathematical analysis
==Example==
Let ''f'' be a 2''π''-periodic function. Then ''f'' is ''α''-[[Hölder condition|Hölder]] for some 0 < ''α'' < 1 if and only if for every natural ''n'' there exists a [[trigonometric polynomial]] ''P<sub>n</sub>'' of degree ''n'' such that
: <math> \max_{0 \leq x \leq 2\pi} | f(x) - P_n(x) | \leq \frac{C(f)}{n^\alpha}, </math>
where ''C''(''f'') is a positive number depending on ''f''. The "only if" is due to [[Dunham Jackson]], see [[Jackson's inequality]]; the "if" part is due to [[Sergei Bernstein]], see [[Bernstein's theorem (approximation theory)]].
==Notes==
{{Reflist}}
==References==
* {{Cite book |first=N. I. |last=Achiezer |author-link=Naum Akhiezer|title=Theory of approximation |translator=Charles J. Hyman |publisher=Frederick Ungar Publishing |___location=New York |year=1956 }}
* {{cite book|mr=0196340|last=Natanson|first=I. P.|author-link=Isidor Natanson|title=Constructive function theory. Vol. I. Uniform approximation|publisher=Frederick Ungar Publishing Co.|___location=New York|year=1964}}
: {{cite book|mr=0196341|last=Natanson|first=I. P.|author-link=Isidor Natanson|title=Constructive function theory. Vol. II. Approximation in mean|publisher=Frederick Ungar Publishing Co.|___location=New York|year=1965}}
: {{cite book|mr=0196342|last=Natanson|first=I. P.|author-link=Isidor Natanson|title=Constructive function theory. Vol. III. Interpolation and approximation quadratures|publisher=Ungar Publishing Co.|___location=New York|year=1965}}
[[Category:Approximation theory]]
[[Category:
|